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Project Summary 
Coastal wetlands are a critical component of the Long Island Sound ecosystem. However, over 
the past century, a significant amount of these wetlands has been lost due to development, filling, 
and dredging, or damaged due to anthropogenic disturbance and modification. Global sea level 
rise is also likely to have a significant impact on the condition and health of coastal wetlands, 
particularly if the wetlands have no place to migrate due to dense coastal development (Donnelly 
and Bertness, 2001). In addition to physical loss of marshes, the species composition of marsh 
communities is changing.  Spartina alterniflora (salt cordgrass) and Spartina patens (salt marsh 
hay), once the dominant species of New England salt marshes, are being replaced by 
monocultures of Phragmites australis (Barrett and Prisloe, 1998; Orson, 1999). During the past 
30-50 years, P. australis is estimated to be spreading at a rate of 1-3 percent per year (Niering 
and Warren, 1980; Warren, 1994). It has been estimated that approximately 10 percent of 
Connecticut's tidal wetlands are dominated by P. australis and further evidence identifies 
approximately 50 percent of tidal and brackish wetlands in Connecticut as sites of P. australis 
invasion (Niering and Warren, 1980; Roman et al., 1984; Chambers et al., 1999).  P. australis 
outcompetes other marsh species in areas with increased fresh water, nitrogen and sediments and 
is positively correlated with marsh fragmentation [e.g., Moore et al., 1999; Bertness et al., 2002].  
In response to the increase of P. australis in many marshes, The Nature Conservancy, the CT 
DEP and other organizations have instituted efforts (commencing in the 1980s) to restore marsh 
health, including the control of P. australis in some areas.  The response of marshes to control 
activities has included both an increase of non-Phragmites marsh species and P. australis 
reinvasion (Farnsworth and Meyerson, 1999).  With the mounting pressures on coastal wetland 
areas, it is becoming increasingly important to identify and inventory the current extent and 
condition of coastal marshes located on the Long Island Sound estuary, identify techniques to 
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track changes in the condition of wetlands over time, and monitor the effects of habitat 
restoration and management. 
 
The goal of this project was to examine the spatial, spectral, and temporal aspects of coastal 
marsh vegetation characterization, identification, and delineation along Long Island Sound using 
both remote sensing and in situ radiometry data. Issues addressed include determining the 
effectiveness of various types of remote sensing data to identify the extent of coastal wetlands, 
identifying dominant coastal wetland vegetation, including the invasive Phragmites australis at 
select marsh locations, assessing the potential impact of adjacent upland anthropogenic activity 
on coastal marsh health and sustainability, and providing recommendations for future coastal 
wetland mapping efforts. Major tasks include the delineation and monitoring of coastal marshes 
from moderate resolution (30 m/pixel) Landsat remote sensing imagery, identification of 
vegetative species within five select marshes from high spatial resolution (<3 m/pixel) QuickBird 
satellite imagery, ADS40 and John Deere AgriServices aircraft-based remote sensing imagery, 
development of a spectral library of dominant tidal marsh plant species throughout the growing 
season, determination of optimal spatial, spectral, and temporal resolutions for coastal wetland 
system characterization, and provide information online regarding the results of the work 
described here. 
 
Project Period: April 1, 2004 – December 31, 2006 
 
Project Description 
The goal of this project was to use remote sensing to identify and delineate the extent of coastal 
marshes along the Connecticut and New York shores of Long Island Sound and distinguish 
among various types of dominant marsh vegetation within select marshes. This was 
accomplished through the use of Landsat Thematic Mapper and Enhanced Thematic Mapper 
moderate spatial resolution, public domain satellite imagery for the Sound-wide portion of the 
project with the more detailed assessment of the spatial extent of dominant marsh plant species 
using QuickBird, ADS40, and John Deere AgriServices high spatial resolution commercial 
remote sensing imagery combined with in situ field studies. The project consisted of the 
following four distinct tasks: 1) general delineation and assessment of coastal marshes, 2) 
identification of dominant vegetative species within select marshes, 3) recommendations for the 
optimal spatial, spectral, and temporal resolutions for coastal wetland system characterization 
and 4) web-based information dissemination of project results. A description of each task is 
provided in the following sections: 
 
The goals of the work reported here, therefore, were to: 
 

• identify and delineate coastal marshes (CT and north shore of Long Island, NY) using 
moderate resolution satellite imagery; 

• assess the marshes in the context of surrounding land cover, impervious surfaces and 
potential for future migration as a response to sea level rise; 

• create a library of in situ spectral measurements for dominant marsh plant species 
throughout the growing season; 
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• distinguish among various types of dominant marsh vegetation using high spatial 
resolution commercial remote sensing imagery combined with in situ field studies at five 
select tidal marsh sites; 

• determine the optimal spatial, spectral, and temporal resolutions of imagery for coastal 
wetland system characterization; 

• provide the results of the research through web access and educational programs. 
 
Activities & Accomplishments 
 
Task 1. Delineation and monitoring of coastal marshes 
One of the major goals of this study was to develop a technique that uses moderate resolution 
imagery to map the location and extent of coastal marshes within the Long Island Sound estuary. 
Two sources of satellite imagery were examined to assess their efficacy to map adequately the 
tidal marshes of Long Island Sound. These include Landsat (both the Enhanced Thematic 
Mapper (ETM)/Thematic Mapper (TM) sensors) and ASTER1 imagery. 
 
September 8, 2002 Landsat ETM Classification 
A September 8, 2002 Landsat ETM image was used as the primary image source for the 
classification of coastal wetlands throughout the Long Island Sound region. Preprocessing of this 
image consisted of mosaicking the WRS Path 13, Row 31 and Row 32 and Path 12 Row 31 
scenes to create a seamless image that covers the entire Long Island Sound region. The WRS 
Path 12 Row 31 scene was acquired July 31, 2002 and substantially overlaps the September 8, 
2002 scenes which provides a comparison of the repeatability of the classification technique used 
and discussed in a later section of this report. This image was further processed to decrease the 
total amount of data to be classified by focusing the analysis on only the coastal areas based on 
proximity to water (including Long Island Sound, rivers, and larger tidal creeks). Figure 1 
provides an example of a portion of the Landsat ETM mosaic used for the classification 
following the extraction of the analysis area. An integrated classification approach which uses 
both pixel-based and object-based classification techniques was utilized to identify coastal 
wetlands in the analysis area.  
 
Pixel-based classification.  The pixel-based technique consisted of using an ISODATA “Cluster-
busting” approach. In this technique, ISODATA clustering is used to identify potential categories 
of interest. Based on the number of clusters selected by the user to be identified, the computer 
places pixels into groups based on their spectral characteristics. The user then identifies and 
labels the clusters into a land cover category. Those clusters not readily identified are placed into 
an “other” category, extracted from the Landsat image and reclassified. This process was 
repeated four times. The results of the four cluster-busting procedures were recoded and 
combined to generate a final classification layer where each pixel is labeled as water, tidal 
marsh, and upland. To remove many of the isolated coastal marsh pixels falsely identified in the 
upland regions, and to smooth the overall result, a 3x3 pixel neighborhood majority filter was 
used. This resulting layer serves as the pixel-based classification that is applied to the integration 
with the object-based classification described in the next section. A sample of the classification 
is provided in Figure 2. 

                                                 
1 Advanced Spaceborne Thermal Emission and Reflection Radiometer 
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Figure 1. An example of the September 8, 2002 Landsat ETM image showing the analysis area extracted for a 
portion of the north shore of Long Island. 

 

  

(a) September 8, 2002 Landsat image (b) ISODATA per-pixel classification (coastal marshes 
are colored magenta) 

Figure 2. ISODATA classification results on Landsat 30-meter resolution imagery for Wheeler Marsh located in 
Milford, Connecticut. 
 
Object-based classification.  In addition to the ISODATA ”cluster busting” approach, an object-
based classification was conducted using eCognition image processing software. Object-based 
classification is the process of classifying image objects rather then individual pixels. Image 
objects are created through multi-resolution segmentation which is the process of grouping 
contiguous pixels with similar qualities (i.e., spectral, textural, spatial) based on information 
from one or more input layers. The benefit of object-based classification over per-pixel 
classifiers is that the image objects contain more information than just spectral information 
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provided by single pixels. In addition, each image object also contains information regarding the 
texture, size, shape, and context of that image object to surrounding image objects. The spectral 
and spatial attributes of each image object are utilized to assign the object to a specific 
classification category, paralleling somewhat the human visual cognitive process.  
 
Input data for the object-based classification consisted of the six September 8, 2002 Landsat 
ETM reflective bands, Landsat ETM thermal band, Landsat ETM panchromatic band, derived 
NDVI (Normalized Difference Vegetation Index), a measure of plant biomass, principal 
components 1, 2, 4, and 6 (which is a technique used to reduce multidimensional data sets to 
lower dimensions and highlight certain land cover features for analysis), and a derived wetness 
layer (Landsat ETM band 5 – band 2). To generate the image objects using multi-resolution 
segmentation, only four Landsat ETM reflective bands (red, NIR, SWIR1 and SWIR2), NDVI (a 
greenness layer), principal component 1 (a brightness layer), and the wetness layer were used. 
These layers were equally weighted in their contribution to the segmentation process.  
 
A general image segmentation was performed first to produce larger image objects which were 
used in a basic binary classification to separate upland objects from water objects. The results of 
this classification were used to assist with a more detailed classification process based on smaller 
image objects. eCognition allows for the creation of objects at various segmentation resolutions 
(sizes) depending on user specified variables.  These include a scale parameter which determines 
the maximum size of the objects and the composition of the homogeneity criterion which uses 
settings of color, shape, smoothness and compactness that roughly determine the shape of the 
objects using spectral and shape information. The assignment of these parameters to generate 
image objects is based on knowledge of the software, input data used, the classification 
procedure to be followed, and what features are to be identified. For the generation of higher 
image objects (considered level 2 image objects by eCognition since larger objects have a larger 
level value) from the seven input layers used in the segmentation process, the scale parameter 
was set to 75, color 0.9 (from 0 to 1), shape 0.1 (color and shape must sum to 1), smoothness 0.5 
and compactness 0.5 (smoothness and compactness must sum to 1). Since the color parameter 
was set much higher then the shape parameter, the spectral information from the input layers was 
the most significant contributor to the creation of these level 2 image objects. 

 
To classify the level 2 image objects into upland or water, the wetness layer was used 
exclusively as the identifying feature. Data exploration of the image objects identified a wetness 
value of 20.13 as a probable threshold between water and upland objects. Tidal wetlands are 
expected to fall in one or the other category based on their level of wetness. To assign objects to 
a specific class, a fuzzy rule was used where the center point of the membership function was 
assigned a value of 20.13 with a range of 19.13 to 21.13. To identify water objects, any segment 
with a value larger then 21.13 was absolutely classified as water with a decreasing function slope 
to 19.13 (Figure 3a). Inversely, uplands were identified as any image object having a wetness 
value below 19.13 with a decreasing function slope to 21.13 (Figure 3b). By using a fuzzy rule, 
those image objects bordering between water and upland (i.e., wetness value between 19.13 and 
21.13) are more easily recognized. Figure 4 shows an example of the result of this level of 
object-oriented classification. 
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Landsat ETM image bands 4, 5, 3 
displayed 

 
Landsat ETM image with Level 2 
image objects outlined in red 

 
Level 2 object-oriented 
classification (green is upland, blue 
is water) 

 
Figure 4.  Sample of the Level 2 object-oriented classification. Green represents upland image objects, blue are 
water image objects. 
 
To extract additional thematic information, a more detailed image object layer was created (level 
1). As with the generation of the larger image objects in the level 2 segmentation, the same seven 
input layers were used in the level 1 segmentation process.  The scale parameter, however, was 
set to 15 to generate smaller objects, color 0.9, shape 0.1, smoothness 0.5 and compactness 0.5. 
During the creation of multiple levels of image objects (i.e., level 1 and level 2), the more 
detailed objects (level 1) will be nested within larger objects (level 2). Any characteristic of a 
larger image object can be applied to the smaller image objects nested within it and, therefore, 
aid in the classification of the more detailed image objects. 
 
Since the classification of image objects can utilize spatial information such as the texture, size, 
shape, and context in addition to spectral information, it can become increasingly difficult to 
identify which characteristic of an object are most important or significant for identifying the 
features of interest. To assist in the determination of these characteristics, See5, a data mining 

  
(a) Membership function used to identify water 
objects 

(b) Membership function used to identify upland 
objects. 

Figure 3. Fuzzy rule membership functions used to classify level 2 image objects into water or upland categories. 
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tool developed by RuleQuest Research2, was used. See5 analyzes and extracts patterns to 
identify those input characteristics that are deemed most important for identifying features of 
interest. The output from See5 is a decision tree that can be re-created in eCognition and used to 
classify the image objects. 

 
To develop the database, image object information from eCognition was exported to an ESRI 
polygon shapefile and representative objects were identified for each of the following land cover 
features: Water Rounded (ocean & lake), Water Elongated (tidal creeks), Low Marsh, High 
Marsh, High Marsh bright, Grass yellow, Grass green, Forest, Barren, Bright Development, Dark 
Development, Dense Development, and Sparse Development. Objects included information such 
as the mean value for each input data layer (i.e., blue band, NIR band, NDVI, PCA 1, etc.), the 
standard deviation for each input data layer, object brightness, object area, object length, object 
width, object length to width ratio, object shape index, and object density. In all there were 35 
unique characteristics that described each image object, and 2,294 objects were selected as 
training data. The attributes of these objects were saved in a database file and converted to a 
format usable by See5. 
 
One of the options in See5 allows for winnowing the data. This process assesses the input 
characteristics and determines which contribute the most to the final classification decision tree. 
Essentially, the process weeds out those characteristics that are found not to be significant 
contributors to the classification and excludes them from the decision tree creation process. Of 
the 35 image object characteristics provided to See5, only 22 were used in the construction of the 
decision tree. Of these, only six were considered to by highly significant: mean band 5 (SWIR), 
mean NDVI, mean band 1 (blue), mean wetness, mean panchromatic, and mean band 2 (green). 
The output decision tree from See5 was then re-created in eCognition using membership 
functions similar to that used in the level 2 classification. See5 provided more branches of the 
decision tree is depicted in the eCognition classification decision tree shown in Figure 5. Since 
tidal marshes were the target feature, only those branches and thresholds that classified tidal 
marshes were used. If the branch continued to separate further other upland or water classes, a 
generic class was given and the branch ended. A sample of the result of the level 1 classification 
is provided in Figure 6. 
 
Final classification.  To produce a final coastal wetland classification, the results from the 
ISODATA “cluster-busting” and the object-oriented classification were combined. ERDAS 
Imagine’s Knowledge Engineer was utilized for this purpose. The Knowledge Engineer is a GUI 
used to design a rule-based approach to classification that utilizes a decision tree. The decision 
tree is comprised of variables and a hierarchy of rules, which are conditional statements, to 
produce a final classification output. The decision tree used for this project is basic. Input 
variables consist of the final ISODATA classification and the object-oriented classification. In 
addition, the following data layers were also included to improve the final classification result: 
PCA1 (brightness), NDVI, Wetness, and elevation DEM. Output classes consisted of water, 
upland, low marsh, and high marsh. Figure 7 shows the design of the decision tree in the 
Knowledge Engineer. 
 

                                                 
2 http://www.rulequest.com/see5-info.html  
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Figure 5. Classification decision tree created in 
eCognition based on thresholds generated from See5. 
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Landsat ETM image bands 4, 5, 3 

displayed 
Landsat ETM image with Level 1 

image objects outlined in red 
Level 1 object-oriented classification 

 
Figure 6. Sample of the Level 1 object-oriented classification. Greens, yellows and orange represent upland image 
objects, blue are water image object, and magenta, purple and pink are tidal wetland objects.  

 
 
To summarize the output results shown in Figure 7: 

1. Water is classified using the Wetness layer and PCA1. Following an attempt to utilize the 
classified water from both the ISODATA classification and Object-based classification, it 
was determined that a pixel with a wetness value greater then or equal to 20.4 and PCA1 
value less then or equal to 34 gave a superior result. Values were selected based on visual 
examination of the data layers. 

2. Low Marsh is classified using the results of the ISODATA classification and the Object-
based classification. In addition, elevation information was utilized. If the ISODATA 
classification equals marsh (ISODATA class 2) and the object-based classification equals 
low marsh (Object-based class 2) and the elevation is less than or equal to 5.33, then the 
pixel is assigned as low marsh. The elevation value was determined by selecting multiple 
points both within the marshes and uplands from the Landsat imagery then analyzed with 
the elevation data to identify an appropriate elevation threshold. 

3. High Marsh is classified using a similar rule to the Low Marsh classification. In this case, 
however, the object-based class equals high marsh (Object-based class 3). 

4. Upland is classified using three separate rules. The first rule (D1 in Figure 7) identifies a 
pixel as upland if the ISODATA classification equals upland (ISODATA class 3) and 
The Object-based classification equals upland (Object-based class 4) and the elevation is 
less than or equal to 5.33. These upland pixels occur at low elevations in close proximity 
to the coastal marshes and coastal waters. The second rule (D2 in Figure 7) assigns any 
pixel above an elevation of 5.33 as upland. This comprises the vast majority of the 
upland. pixels. The last rule (D3 in Figure 7) uses the NDVI layer to identify pixels of 
high vegetation biomass that are not wet. In this rule, the elevation is less than or equal to 
5.33 and NDVI is greater then or equal to 191 when stretched to an 8-bit dataset. This 
rule was developed to capture more of the low lying upland pixels not captured using rule 
D1. 
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Figure 7. Graphic showing the design of the decision tree used to integrate the ISODATA 
classification with the object-based classification. 

 
The order of rules in the knowledge base affects the classification results; in the Knowledge 
Engineer, lower rules in the hierarchy are superseded by rules located higher in the hierarchy. 
Pixels that meet the criteria of more than one rule are assigned the value identified by the top-
most rule in the decision tree. The order of each rule in the decision tree is therefore important. It 
is also possible to have pixels not classified by any of the rules. Those pixels not placed in a land 
cover category based on the decision tree were extracted and classified using ISODATA to 
assign them to one of the final four categories. These pixels were merged with the integrated 
classification to produce a final tidal marsh classification map (Figures 8 and 9). 
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Figure 8. Final 2002 coastal wetland classification for Long Island Sound (water is blue (832,003 acres), upland is green (318,981 acres), high coastal marsh is 
magenta (9,563 acres), low coastal marsh is purple (2,563 acres)).
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(a) September 8, 2002 Landsat ETM image, Branford 
and Guilford, Connecticut 

(b) Coastal wetland classification, Branford and 
Guilford, Connecticut 

(c) September 8, 2002 Landsat ETM image, Crab 
Meadow, Huntington, New York (zoomed 2x) 

(d) Coastal wetland classification, Crab Meadow, 
Huntington, New York (zoomed 2x) 

 
Figure 9. Close up examples showing the results of the final Landsat based coastal wetland classification. 
 
Accuracy assessment consisted of the generation and ground truth labeling of 1,000 stratified 
random sample of points. These points were compared against the Landsat imagery and high 
resolution ADS40 imagery (for the Connecticut coast) in addition to utilizing Google Earth to 
help identify the land cover at each sample point. The points were labeled as one of the four land 
cover categories of water, low marsh, high marsh, and upland and used to produce the reference 
information. The reference information was compared with the classified information for each 
sample point to produce an error matrix to calculate user’s (a measure of the reliability of an 
output map generated from a classification scheme) and producer’s (a measure of the accuracy of 
a particular classification scheme) and overall classification accuracy and the Kappa coefficient3 
(Congalton and Green, 1999). The results are reported in Table 1. As can be seen, the overall 
accuracy is high (92.90%) with the best classification accuracies being with the water category 
followed closely by the upland category. This is to be expected since most of the image is 
comprised of water which is a spectrally unique feature and is typically easily classified. The low 
marsh and high marsh categories show lower classification accuracies with most of the error 
occurring between these two classes. 
 

                                                 
3 Cohen’s Kappa Coefficient accounts for agreement due to chance alone. A value of kappa approaching 1.0 
indicates very high agreement, a value approaching -1.0 indicates total disagreement, and a value near zero indicates 
agreement no better than that achieved by chance alone. 



 13

Table 1. Accuracy assessment of the September 8, 2002 Landsat classification. 
 Reference 

Classified Water Low 
Marsh 

High 
Marsh Upland Totals Users 

Accuracy 
Water 

 557 0 1 2 560 99.46% 

Low 
Marsh 9 58 31 2 100 58.00% 

High 
Marsh 0 8 80 15 103 77.67% 

Upland 
 1 0 2 234 237 98.73% 

Totals 
 567 66 114 253 1000  

Producers 
Accuracy 98.24% 87.88% 70.18% 92.49%   

 
Number Correct = 929 out of 1,000 
Overall Accuracy = 92.90% 
Overall Kappa Statistic = 0.8825 
 
To reduce the influence of the water class on the accuracy assessment, a second assessment was 
conducted on a reduced dataset. The original classification was buffered 90 meters around the 
classified high and low marsh areas. This produced a classified image with a 90 meter-wide band 
around the coastal marsh areas producing an image with less water and upland influence to 
provide a better assessment of the accuracy of the coastal marsh areas (Figure 10). Similar to the 
previous assessment, a stratified random sample of points was selected, however, only 300 points 
were used. Table 2 provides the results. As can be seen, the overall accuracy has dropped 
(84.67%) due to the reduced amount of water in the assessed classification. Also of note is the 
slight increase in accuracy of the low and high marsh categories.  
 
July 31, 2002 Landsat classification of eastern Long Island Sound 
To classify the extreme eastern portion of the Sound, a separate Landsat scene (July 31, 2002) 
had to be acquired. Not only did this image serve to provide data for the classification of the 
eastern Sound, but also, due to the considerable overlap with the September 8, 2002 scene 
(Figure 11), it allowed for a comparison of the repeatability of the classification technique. The 
classification procedures followed for this July 31, 2002 scene were identical to the September 8, 
2002 although different training areas were used for the object-based classification portion of the 
classification. There are more than 2 million pixels in the overlap area. Table 3 provides statistics 
of the classification agreement and disagreement of each of these pixels. As can be seen, 98.40% 
of the pixels agreed. The categories of highest agreement were with the water and upland 
categories. Again, these are the most abundant categories resulting in better agreement. The low 
marsh category showed  
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Full classification extent 90-meter buffered classification extent 
Figure 10. Examples of a portion of the full Landsat classification and the 90-meter buffered area around 
classified tidal wetlands. 

 
Table 2. Accuracy assessment of a reduced spatial extent of the September 8, 2002 Landsat classification. 
 Reference 

Classified Water Low 
Marsh 

High 
Marsh Upland Totals Users 

Accuracy 
Water 

 64 8 1 2 75 85.33% 

Low 
Marsh 3 59 12 1 75 78.67% 

High 
Marsh 0 2 69 4 75 92.00% 

Upland 
 0 1 12 62 75 82.67% 

Totals 
 67 70 94 69 300  

Producers 
Accuracy 95.52% 84.29% 73.40% 89.86%   

 
Number Correct = 254 out of 300 
Overall Accuracy = 84.67% 
Overall Kappa Statistic = 0.7956 
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Table 3. Assessment of the overlap classification. 
 8 SEPTEMBER 2002 
31 JULY 

2002 Water Low 
Marsh 

High 
Marsh Upland Totals User’s 

Accuracy 
Water 

 1,488,673 1,866 839 3,122 1,494,500 99.61% 

Low 
Marsh 444 929 1,540 275 3,188 29.14% 

High 
Marsh 338 788 16,184 3,568 20,878 77.51% 

Upland 
 11,025 952 8,056 509,207 529,240 96.21% 

Totals 
 1,500,480 4,535 26,619 516,172 2,014,993  

Producer’s 
Accuracy 99.21% 20.49% 60.80% 98.65%   

 
Number of Pixels Agreeing = 2,014,993 out of 2,047,806 
Overall Agreement = 98.40% 

 
 
Figure 11. Extent of the overlap classification area between P13/R31 September 8, 2002 Landsat and P12/R31 July 
31, 2002 Landsat.  
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the lowest level of agreement in terms of User’s and Producer’s accuracy. A considerable 
amount of this error is between the low and high marsh categories although there is a large 
amount of low marsh pixels in the September 8, 2002 classified as water in the July 31, 2002 
classification. A close up view of the comparison is provided in Figure 12. 
 

 
September 8, 2002 Landsat Classification agreement and 

disagreement 
July 31, 2002 Landsat 

Blue = water agreement 
Purple = low marsh agreement 
Magenta = high marsh agreement 
Green = upland agreement 
White = water/upland to low/high marsh disagreement 
Gold = low marsh to high marsh disagreement 
Grey = water to upland disagreement 

Figure 12. Example of the comparison of the September 8, 2002 and July 31, 2002 classifications highlighting areas 
of classification agreement and disagreement. 
 
Analysis of Marshes in the Context of Surrounding Land Cover  
Since tidal wetlands occupy a unique niche on the landscape, usually nestled between upland and 
tidal waters, they are often spatially limited and under pressure on one side from water pollution 
and sea level rise and on the other side from encroachment, development, and pollution.  This 
portion of the project looked at factors that are likely to influence the potential health of the tidal 
marshes classified and to identify those marshes most at risk. The basis of this analysis came 
from a Technical Report on the planning process for the Blackbird-Millington Corridor 
Conservation Area Plan4. The Corridor area includes tidal wetlands and included analysis to 
assess the health of these wetlands. Planners in the Blackbird-Millington study looked at five 
indicators of healthy tidal wetlands and waters. These include: the ability to migrate (as indicated 
by unaltered topography), connectivity to upland habitats (as indicated by natural buffers), 
natural hydrologic regime (as indicated by the amount of impervious surfacing in the watershed 
and the extent of ditching and groundwater removal), natural hydroperiod (as indicated by 
unimpaired tidal exchange), and characteristic ecological community composition, distribution, 
and vegetation (as indicated by the absence of invasive Phragmites). Based on these guidelines, a 
similar assessment was conducted on the results of the Landsat-based tidal wetland classification 
of this project, although some of the above measures were not included due to lack of 
information and this analysis being at a coarser scale. The following sections describe each of the 
indicators examined. 

                                                 
4 http://www.dnrec.state.de.us/nhp/information/blackbird.asp (last accessed April 4, 2007) 
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Connectivity to Upland Habitats: This measure evaluates the existence of natural and built-up 
upland cover adjacent to identified tidal wetlands. It is assumed that natural vegetation at the 
edge of tidal wetlands will provide erosion control and wildlife benefits. Therefore, the extent of 
the connection between the tidal marsh and natural upland areas is vital for the maintenance of 
the health of tidal marshes. Conversely, built-up areas adjacent to tidal wetlands will negatively 
impact the wetland by allowing an increase in the amount of fresh, nutrient-rich water running 
into the marshes and providing suitable habitat for the spread of Phragmites. To determine the 
amount of natural and built-up cover within two buffer zones of 100-meters and 200-meters, the 
CLEAR CCL5 land cover from 2002 was used. Any land cover classified as deciduous forest, 
coniferous forest, non-forested wetland, forested wetland, or tidal wetland in the CCL land cover 
was considered natural cover. The developed category was used as the built-up cover. Water 
remained as water, and barren land remained as barren. Buffered areas of 100-meters and 200-
meters were identified surrounding each classified tidal marsh from this project and the amount 
of each of the four land cover types quantified for each marsh. A ranking was then applied to 
each tidal wetland based on the amount of natural and built-up cover that existing within each of 
the buffered zones following the rules from the Blackbird-Millington Corridor Conservation 
Area Plan. Table 4 provides the application of the rankings to each tidal marsh. Figure 13 shows 
an example of the ranking results for a select few marshes. 
 
Table 4. Indicator rankings based on the amount of natural land cover within 100-mters or 200-meters of classified 
tidal marshes (colored box represent the color scheme shown for each marsh in Figure 12). 
Upland Habitat 
Connectivity Poor (rank 1) Fair (rank 2) Good  (rank 3) Very Good (rank 4) 

100-meter buffer 
(% natural cover) <75% 75 - 90% 90 - 95% >95% 

100-meter buffer 
(% built-up cover) <25% 10 – 25% <10%  

200-meter buffer 
(% natural cover) <50% 50 - 80% 80 - 90% >90% 

200-meter buffer 
(% built-up cover) <25% 10 – 25% <10%  

 
Ability to Migrate: The sea level rise zone is the areas of low elevation less then 1-meter above 
sea level adjacent to the classified tidal wetlands. It is assumed that as sea level continues to rise, 
the wetlands will require un-altered low elevation areas into which to migrate if the wetlands are 
unable to keep pace with rising sea level. Without low lying areas suitable for migration, they are 
at risk of being lost to open water. A 1-meter threshold was selected based on two factors; the 
100 year sea level rise prediction of 59 centimeters by the Intergovernmental Panel on Climate 
Change (2007) and the one-meter vertical resolution of the USGS NED 10-meter digital 
elevation model. Due to the relative spatial coarseness of the NED DEM, it was felt using any 
value lower then 1 meter would not yield adequate results. 
 

                                                 
5 http://clear.uconn.edu/projects/landscape/index.htm  
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(a) 100-meter buffered area of natural cover (represented by thin black line). 

 

 
(b) 200-meter buffered area of natural cover 

 
Figure 13. Analysis of adjacent natural land cover to classified tidal marshes within (a) 100-meter and (b) 200-
meter buffered areas. The light green areas represent natural land cover, light orange anthropogenic land cover, light 
blue is water, and gray is barren land. 
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As it was, very few areas below 1 meter were identified adjacent to tidal wetlands due to the 
coarseness and errors within the NED DEM data. Once the sea level rise zone was identified, the 
abundance of built-up land cover was calculated. Table 5 provides the application of the rankings 
to each tidal marsh based on the percentage of built-up area with the sea level rise zone. Figure 
14 shows an example of the ranking results for a select few marshes. 
 
Table 5. Indicator rankings based on the amount of built-up area within the identified sea level rise zone adjacent to 
classified tidal marshes (colored box represent the color scheme shown for each marsh in Figure 13). 
Wetland 
Migration 
(sea level rise zone 
area contains ) 

No adjacent 
low elevation 
area (rank 0) Poor (rank 1) Fair (rank 2) Good  (rank 3) Very Good 

(rank 4) 

Built-up area 0 > 25% 15-25% 10-15% < 10% 
 
 

 
 
Figure 14. Classified tidal wetlands with adjacent sea level rise zones identified as light purple. 
 



 20

Watershed Impervious Surfaces: This analysis is based on estimates of impervious surfaces for 
sub-regional watersheds intersecting the classified tidal wetlands, regardless of where the 
impervious surfaces fall within the watershed. Impervious surfaces will have the tendency to 
increase the peak volume of water during a rain event, causing increased stream channel erosion, 
added pollution, local flooding, and decreased base flow available during drought conditions. 
Likely, the closer impervious surfaces are to the wetland, the greater the impact of that 
impervious surfaces. But, for this project, if a watershed contains a classified tidal wetland, that 
wetland is assigned the imperviousness value of the intersecting watershed. Impervious surface 
estimates were calculated for each sub-regional drainage basin based on the LISS 2002 sub-pixel 
impervious surface estimation6. Table 6 provides the application of the rankings to each tidal 
marsh based on the percentage of impervious surfaces within the intersecting sub-regional 
watershed. Figure 15 shows an example of the ranking results for a select few marshes. 
 
Table 6. Indicator rankings based on the amount of impervious surfaces within the intersecting sub-regional 
watershed (colored box represent the color scheme shown for each marsh in Figure 14). 
Impervious 
Surfaces (area of 
sub-regional drainage 
basin covered) 

Poor (rank 1) Fair (rank 2) Good  (rank 3) Very Good (rank 4) 

% Impervious 
Surfaces >15% 10-15% 5-9% <5% 

 
 

 
Figure 15. Classified tidal wetlands with intersecting sub-regional watershed imperviousness displayed. Red 
shaded watersheds have impervious surfaces greater then 25%, yellow shaded watersheds have between 10 
and 25% imperviousness. 

 

                                                 
6 http://clear.uconn.edu/projects/imperviouslis/project.htm  
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Final Tidal Wetland Rankings Identifying Potential Health and Sustainability: The results of the 
rankings for each of the six indicators examined were summed to provide the final ranking 
values for each classified tidal wetland. Values ranged from five to twenty-one. These were 
adjusted to a range of 1 (most at risk) to 16 (least at risk). Table 7 identifies the number of tidal 
wetlands classified falling into each of the ranking categories. Additionally, Figure 16a provides 
an example of classified tidal marshes and their respective marsh ranking. The rankings were 
also further condensed into three categories to identify those tidal marshes most at risk (values 1 
– 6), moderately at risk (values 7 – 10), and least at risk (values 11-16). These are shown in 
Figure 16b. While not conclusive, this assessment may provide beneficial information when 
attempting to identify tidal marshes most at risk to degradation. 
 

Table 7. Marsh rankings and number of marshes contained within each rank value 
based on the classification of 875 marsh units along Long Island Sound. 

Most At Risk Moderately At Risk Least At Risk 

Marsh 
Rank 

Number 
of 

Marshes 

Marsh 
Rank 

Number 
of 

Marshes 

Marsh 
Rank 

Number 
of 

Marshes 
1 13 7 77 11 41 
2 42 8 118 12 148 
3 58 9 61 13 34 
4 46 10 54 14 6 
5 75   15 13 
6 84   16 3 

TOTAL 318 TOTAL 310 TOTAL 245 
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(a) Individual marsh rankings 

 

 
(b) Condensed marsh rankings (marshes outlined in yellow are at moderate 

risk, marshes outlined in red are at high risk) 
Figure 16. Example of the final result of the analysis of upland conditions on the potential health 
and sustainability of classified tidal wetlands. Image (a) shows the individual marsh rankings 
whereas image (b) shows the condensed rankings. Red outline identifies the boundary of tidal 
marshes most at risk, yellow are tidal marshes moderately at risk, and green (not shown) are tidal 
marshes with least risk. Boundaries are displayed on the September 8, 2002 Landsat ETM image. 
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Monitoring changes in coastal marshes 
A September 28, 1989 Landsat Thematic Mapper image was acquired to compare and assess 
potential tidal wetland change against the September 8, 2002 ETM image. There are several 
techniques for conducting change detection. Such methods include comparison of land cover 
classifications, multidate classification, image differencing/ratioing, vegetation index 
differencing, principal components analysis and change vector analysis (Singh, 1989). Change 
detection with spectral remote sensing data is based on the idea that any change in land cover 
will result in changes in radiance values that are large enough to be detected. One of the 
problems with this is that radiance value change can be caused by other factors such as 
differences in atmospheric conditions, differences in sun angle and differences in soil moisture. 
 
To reduce the impact of radiance difference among the two dates of imagery, the September 28, 
1989 Landsat TM image was histogram matched to the September 8, 2002 Landsat ETM (Figure 
17). Histogram matching is the process of generating a histogram from one image to resemble 
the histogram of another image. To be most effective, the two images should have similarly 
shaped histograms and relative dark and light features. Once the histograms are matched, image 
differencing was performed using the Change Detection module in ERDAS IMAGINE 9.1. This 
procedure performs a simple subtraction process of a selected band from a T1 image (September 
28, 1989) and T2 image (September 2, 2002). The near infrared (band 4) band was used for 
image differencing since it most clearly distinguishes among water, vegetation, and some built-
up features. The resulting output is a grey scale image where dark and bright pixels represent 
areas of reflectance change (likely areas of land cover change) and gray pixels represent areas of 
little reflectance change (likely areas of no land cover change). The initial results of this analysis 
did not highlight significant areas of change in the tidal wetlands. To improve the analysis and 
focus analysis on just the tidal wetlands, image pixels from each image were extracted from just 
those areas classified as low or high marsh from the 2002 classification. Image differencing was 
again performed to highlight change in the tidal marshes. The results indicated there was 
substantial change occurring in the tidal marshes, but the change was due primarily to reflectance 
change between the images and not related to land cover change, due perhaps to phenological 
differences, tidal stage, or simply radiometric differences between the two scenes. Figure 18 
provides examples of this analysis. 
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September 28, 1989 Landsat TM histogram matched September 8, 2002 Landsat ETM 

  
September 28, 1989 Landsat TM 

Extraction of tidal wetland areas based on classification 
of 2002 ETM image. 

September 8, 2002 Landsat ETM 
Extraction of tidal wetland areas based on classification 

of 2002 ETM image. 

  
Image difference. Dark and bright pixels represent 

reflectance change. Gray pixels represent no change 
Highlight Change Image. Green areas identify pixels 

that have a reflectance change of greater then 10 percent 
 
Figure 17. Examples of the histogram matching of the September 28, 1989 Landsat TM image to the September 8, 
2002 Landsat ETM image. 
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Figure 18. Examples of image differencing to highlight areas of land cover change. 
 
Assessment of ASTER imagery 
ASTER satellite imagery has better spatial resolution than Landsat (Table 8), and may therefore 
result in an improved wetland classification. Because ASTER has a smaller area of coverage and 
is collected much less frequently than Landsat, it was not possible to obtain a consistent set of 
ASTER imagery to cover the entire Long Island Sound area during the growing season. Some 
ASTER imagery contemporaneous with the September 8, 2002 Landsat scene was obtained for 
the western portion of the Sound. A comparison of classification between ASTER and Landsat 
imagery was therefore possible to assess which sensor would produce a more accurate tidal 
wetland classification. To perform this assessment, two independent classifications were 
conducted. Subsets of ASTER and Landsat imagery were selected for the Wheeler Marsh area of 
Connecticut (Figure 19). The ASTER image was collected on September 9, 2004 whereas the 
Landsat image was collected on September 8, 2002. Although from different years, the data are 
from the same portion of the growing season which is critical for comparison. 
 
Table 8. Spatial and spectral characteristics for ASTER and Landsat satellite imagery. 

ASTER LANDSAT ETM 

Band Spatial 
Resolution Spectral Resolution Band Spatial 

Resolution Spectral Resolution 

 -- -- 1 30-meters Blue 0.45-0.52 um 
1 15-meters Green 0.52-0.60 um 2 30-meters Green 0.52-0.60 um 
2 15-meters Red 0.63-0.69 um 3 30-meters Red 0.63-0.69 um 
3 15-meters NIR 0.76-0.86 um 4 30-meters NIR 0.76-0.90 um 
4 30-meters SWIR 1.60-1.70 um 5 30-meters SWIR 1.55-1.75 um 
5 30-meters SWIR 2.145-2.185 um 6 60-meters Thermal 10.4-12.5 um 
6 30-meters SWIR 2.185-2.225 um 7 30-meters SWIR 2.08-2.35 um 
7 30-meters SWIR 2.235-2.285 um  -- -- 
8 30-meters SWIR 2.295-2.365 um  -- -- 
9 30-meters SWIR 2.360-2.430 um  -- -- 

 

   
September 28, 1989 

Landsat TM 
September 8, 2002 

Landsat ETM 

September 28, 1989 
Landsat TM histogram matched to 
September 8, 2002 Landsat ETM 
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ASTER Satellite Image 
September 9, 2004 

Near-infrared, red, green bands displayed 

Landsat ETM Satellite Image 
September 8, 2002 

Near-infrared, red, green bands displayed 

Classification from ASTER imagery Classification from Landsat imagery 
Figure 19. Comparison of  the classification of tidal wetlands from both ASTER and Landsat ETM satellite imagery  
(water is blue, upland is green, high coastal marsh is magenta, low coastal marsh is purple). 
 
To classify each image, the NLCD Mapping Tools created through the National Land Cover 
Dataset program were used generate training information and apply the classification. Several 
training pixels were selected that represent various land cover features within each image. These 
include: dark, medium, and bright built-up features, grass, forest, water, low marsh and high 
marsh features. The same training point was used for each image to maintain consistency. These 
training data were applied to each image from which appropriate files were generated to apply to 
See5, a data mining tool. See5 was applied to derive an appropriate classification tree (see Figure 
20). The classification tree was then applied to the image data to derive a final classification. The 
classes were recoded into water, low marsh, high marsh, and upland. Additionally, the upland 
area was edited to remove misclassified low and high marsh from the upland areas. 
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Classification Tree Derived from ASTER Image 

band05 <= 9: Water (347) 
band05 > 9: 
:...band06 <= 26: 
    :...band04 <= 24: 
    :   :...band07 <= 16: Low Marsh (50) 
    :   :   band07 > 16: Developed1 (81) 
    :   band04 > 24: 
    :   :...band03 > 84: Forest (19) 
    :       band03 <= 84: 
    :       :...band08 <= 18: High Marsh (242) 
    :           band08 > 18: 
    :           :...band08 <= 20: Developed4 (3) 
    :               band08 > 20: Developed1 (5) 
    band06 > 26: 
    :...band03 > 91: 
        :...band01 <= 152: Grass2 (69) 
        :   band01 > 152: Developed3 (9) 
        band03 <= 91: 
        :...band03 <= 57: Developed2 (69/3) 
            band03 > 57: 
            :...band01 <= 88: Grass1 (37/1) 
                band01 > 88: 
                :...band08 <= 27: Developed4 (12/3) 
                    band08 > 27: Barren (25) 

 
Classification Tree Derived from Landsat Image 

band04 <= 31: 
:...band04 <= 13: Water (97) 
:   band04 > 13: 
:   :...band06 <= 140: Low Marsh (31) 
:       band06 > 140: Developed1 (35) 
band04 > 31: 
:...band01 <= 70: 
    :...band04 <= 72: High Marsh (89) 
    :   band04 > 72: Forest (15/2) 
    band01 > 70: 
    :...band05 <= 85: 
        :...band07 <= 46: Developed4 (12/2) 
        :   band07 > 46: 
        :   :...band01 <= 87: Developed4 (4) 
        :       band01 > 87: Developed2 (29/2) 
        band05 > 85: 
        :...band04 <= 77: 
            :...band02 <= 65: Grass1 (17) 
            :   band02 > 65: Barren (21/3) 
            band04 > 77: 
            :...band03 <= 112: Grass2 (37/2) 
                band03 > 112: Developed3 (8) 

Figure 20. Resulting classification trees from both the ASTER and Landsat 
images based on similar training data. Band numbers correspond to bands listed 
in Table 8. 
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Accuracy assessment was performed on 150 stratified random sample of points. The same set of 
points was used for each classification. Points were compared against the ASTER and Landsat 
imagery and high resolution ADS40 imagery which served as the reference data. Reference 
information was compared with the classified information for each sample point to produce an 
error matrix to calculate overall, user’s and producer’s accuracy. The results are reported in 
Table 9 and Table 10. Both classifications have similar overall accuracies with the Landsat 
classification producing a slightly higher overall classification accuracy. It was expected the 
ASTER image would have produced the better result given its improved spatial resolution in 
three bands and larger number of spectral bands used in the classification. These results indicate 
that the Landsat ETM sensor, with its larger areal coverage, would be a more suitable candidate 
for conducting a classification compared to the ASTER sensor. Further, the 15-meter 
panchromatic band on Landsat ETM can be used to sharpen the 30-meter multispectral data 
yielding a fused 15-meter multispectral image. Data fusion algorithms will be examined in future 
research. 
 

Table 9. ASTER classification accuracy. 
  Reference 
  Water Low M. High M. Upland TOTAL User’s 

Accuracy 
Water 43 0 0 0 43 100.00% 

Low M. 4 14 0 2 20 70.00% 
High M. 0 3 15 5 23 65.22% 
Upland 0 0 0 64 64 100.00% 
TOTAL 47 17 15 71 150  C

la
ss

ifi
ed

 

Producer’s 
Accuracy 91.49% 82.35% 100.00% 90.14%  Overall Acc. 

90.67% 
 

Table 10. Landsat classification accuracy. 
  Reference 
  Water Low M. High M. Upland TOTAL User’s 

Accuracy 
Water 45 0 0 0 45 100.00% 

Low M. 1 10 0 2 13 76.92% 
High M. 0 3 16 2 21 76.19% 
Upland 0 2 1 68 71 95.77% 
TOTAL 46 15 17 72 150  C

la
ss

ifi
ed

 

Producer’s 
Accuracy 97.83% 66.67% 94.12% 94.44%  Overall Acc. 

92.67% 
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Task 2.  Identification of vegetative species within marshes 
 
The major goal here to use high-resolution image data to identify specific marsh vegetative 
species in the marshes.  This required knowledge of the spectral reflectance characteristics of 
individual species, which change throughout the growing season.  To address this, we collected 
reflectance spectra of major marsh species using a spectroradiometer in the field over two entire 
growing seasons.  These data were then compared to QuickBird satellite data (2.44 m/pixel, 4 
bands: blue, green, red, NIR). Field measurements were collected for the marsh species P. 
australis, Typha spp., S. patens and S. alterniflora, where present at five marshes during the 
2004 growing season: Wheeler Marsh, Flax Pond, Barn Island Marsh, Ragged Rock Creek 
Marsh, and Chapman Pond.  This experience guided collection of data for the 2005 season, 
which included biweekly measurements at a single site, Ragged Rock Creek Marsh.  This 
repeatability was necessary to capture changes in plant phenology throughout the growing 
season.  Ragged Rock was also accessible without a boat and located at the mouth of the CT 
River where repeated sets of QuickBird satellite data were available.  Reflectance spectra were 
examined to determine when during the year species were most distinguishable from one 
another.  These results formed the basis for a set of rules that were applied to the classification of 
QuickBird data for Ragged Rock Creek Marsh. 
 
Collection of in situ spectral measurements of P. australis and other marsh species at other CT 
marshes and production of a marsh vegetation spectral library 
Reflectance spectra were obtained of dominant marshes species in situ using an ASD Fieldspec 
FR spectroradiometer (Analytical Spectral Devices, Boulder, CO) with a wavelength range of 
350-2500 nm, a sampling interval of 1.4 nm between 350-1000 nm and 2 nm between 1000-2500 
nm, and a spectral resolution of 3 nm between 350-1000 nm and 10 nm between 1000-2500 nm.  
The spectrometer is equipped with a 1 m long fiber optic sensor with a 25˚ field of view.  Spectra 
were collected by positioning the fiber optic sensor ~nadir within 1 m of the species canopy by 
hand.  Late in the season, the height of Phragmites prohibited a nadir view and canopy spectra 
were collected at an oblique angle.  Individual spectral measurements were an average of 5 scans 
and each canopy was generally sampled 10 or more times.  Reflectance spectra were normalized 
to a white Spectralon® (sintered Halon) panel.   

Example reflectance spectra of marsh species at Ragged Rock Creek Marsh are shown in Figure 
21.  The shape of the reflectance spectra of each plant species is broadly similar, including the 
following absorptions typical of healthy photosynthesizing vascular plants (e.g. Mimuro and 
Katoh, 1991): 430 nm (Chl a), 448 nm (Chl b, carotenoids), 471 nm (carotenoids), 642 nm (Chl 
b), 662 and 680 nm (Chl a), the green peak at 550 nm and strong reflectance in the NIR at 
approximately 800 nm (Figure 21).  At the beginning of the growing season, each spectrum 
shows expected increases in the strength of the absorptions at approximately 450 nm and 680 nm 
due to chlorophylls and carotenoids within the leaves and an increase in NIR reflectance due to 
leaf biomass. This trend continues in each species until the onset of senescence (Figure 21a).  
Comparison of the spectra of individual species on each sampling date shows that the magnitude 
and shape of the spectra differ qualitatively (Figure 21b), which is a function of each species’ 
chemistry, biomass and phenological cycle. 
   



 30

 
Figure 21. Example reflectance spectra of dominant plant species in Ragged Rock Creek 
marsh, QuickBird band positions and absorptions due to plant pigments are indicated.   
(a) P. australis throughout the 2005 growing season. (b) Major species on a single day. 
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To relate spectral variability to the QuickBird data, reflectance spectra of each species taken 
during both field seasons were averaged over each QuickBird band (Figure 21); QuickBird band 
ratios were then calculated and plotted in Figure 21.  The spectral behavior is broadly consistent 
over the two growing seasons.  Trends of NDVI and the NIR/red ratios mimic each other, where 
the NIR/red ratio provides greater separability amongst the individual points (Figure 22a and 
22b).  All species show a rise in these indices at approximately day 160 (early June) 
corresponding with the green-up phase of plant growth and a subsequent decline in the indices 
corresponding to senescence.  The behavior of the seasonal variation in each index varies with 
plant species: S. patens and P. australis reach peak values at day 200 and Typha spp. at day 170.  
Typha spp. NDVI and NIR/red values are generally higher than the other species near the time of 
its peak (mid to late June), while P. australis values exceed the other species in mid August 
through early September. 
 
The seasonal pattern of the QuickBird green/blue ratio of S. patens is distinct from the other two 
species (Figure 22c).  Values of this ratio are similar for each species at the beginning of the 
season, but S. patens rises to a peak value near day 200 (mid July).  The absolute value for S. 
patens is twice that of Typha spp. and P. australis from early June through early August.  
  
The general seasonal pattern of the QuickBird red/green ratio for all species shows an initial 
decline from approximately day 140 to day 180 (late May – late June) and then an increase 
(Figure 22d).  S. patens values in this index are lower than the other two species over days 165 to 
225 (mid June – early August).  Typha spp. values exceed those of the other species from mid-
July onward. 
 
The general seasonal pattern of the QuickBird NIR/green ratio for all species shows an increase 
in the middle portion of the growing season and decline at the end (Figure 22e).  S. patens values 
in this index are consistently lower than the other two species throughout the year.  Values for 
Typha spp. are higher than and separable from the other two species in mid to late June.  Spectral 
index values for P. australis are higher than and separable from the other two species in late 
August – early September. 
 
Of the five simple band ratios calculated from the field reflectance spectra, four were determined 
to be most useful in identifying at least one major plant community: for P. australis, the NIR/red 
ratio on September 8, 2006, for S. patens, the green/blue ratio on July 14, 2004, and for Typha 
spp., the red/green ratio on August 12, 2005 and the NIR/green ratio on June 15, 2004 (Figure 
22).  These dates both show the greatest spectral separability between individual species and best 
correspond with the dates (month, day) of the QuickBird images available for classification  

The phenological trends seen here can vary as a function of plant vigor, which may depend on 
changes in salinity, weather, predation or disturbance.  That these trends are consistent over two 
years suggests that these rules may have broader spatial and temporal application, but are 
perhaps best limited to regions of consistent climate.  
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Figure 22. Field reflectance data recalculated as QB bands for the dominant species over the 2004 - 2006 growing 
seasons.  Error bars are one standard deviation.  Circles refer to relationships utilized in the classification process. 
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High Resolution Image Classification 
High Resolution Image Data Collection The original research plan called for the use of 
QuickBird satellite imagery to classify the dominant wetland plants at five select tidal wetlands 
(Flax Pond, Wheeler Marsh, Great Island, Chapman Pond, and Barn Island). Requests were 
submitted to DigitalGlobe for the acquisition of image data for each of these sites beginning in 
2004 and continuing through the 2005 and 2006 growing seasons (July through September). Due 
to atmospheric conditions and competing requests for data, QuickBird data were ultimately only 
acquired at three of the five sites (see Table 11). As such, other high resolution image data were 
acquired from various sensors and classified to produce tidal marsh classifications. Examples of 
these are provided in Figure 23. 
 
Table 9. Dates of high spatial resolution image data collected for each of the five study marshes. 

 TIDAL WETLAND 

SENSOR 

Wheeler 
Marsh 

Chapman 
Pond 

Mouth of 
Connecticut 
River (Great 

Island 
Marsh) 

Barn Island 
Marsh Flax Pond 

QuickBird  31 Jul 2003 8 Jul 2003 7 Sept 2004  
  10 Jul 2005 27 May 2004 28 Sept 2005  
   2 Jul 2004   
   20 Jul 2004    
   12 Sep 2004   
   2 Jun 2005   
   17 Jun 2005   
   23 Jul 2005   
   31 Jul 2006   
   13 Aug 2006   
   6 Nov 2006   
ADS40 20 Sep 2004 20 Sep 2004 20 Sep 2004 20 Sep 2004  
John Deere 
Agri-Services 18 Sep 2006 21 Sep 2006 21 Sep 2006 21 Sep 2006 18 Sep 2006 
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QuickBird 2.44-meter 

September 12, 2004 
ADS40 0.5-meter 

September 20, 2004 
John Deere 0.3-meter 
September 21, 2006 

 
True Color 

 
True Color 

 
True Color 

 

 
False Color False Color False Color 

Figure 23. Examples of true color and false color imagery covering the same tidal marsh area from the QuickBird, 
ADS40, and John Deere Agri-Services sensors. Comparing the QuickBird and ADS40 imagery (from 2004) with the 
John Deere image (from 2006), the impact of the Phragmites control programs where Phragmites has been removed 
and the area treated is noticeable (bright areas in the images). 
 
Ragged Rock Creek Marsh: Classification of the Ragged Rock Creek Marsh, located at the 
confluence of the Connecticut River with Long Island Sound, was conducted using the 
eCognition image analysis software (Benz et al., 2004).  eCognition allows for a variety of image 
and other data types to be added as input layers to a project file.  For this project, input data 
consisted of individual QuickBird bands from a single date, multiple date band ratios, and 
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LiDAR top of canopy information. LiDAR stands for Light Detection And Ranging and is a 
technology that uses lasers mounted in an aircraft to measure accurately the elevation of the 
ground and/or height of canopy. The LiDAR data were collected through another project for the 
central Connecticut coast area which included the Ragged Rock Creek Marsh area. Together, 
these data were segmented into image objects which are contiguous pixels that are grouped 
together into homogeneous polygon features.  Each band or layer in the eCognition project was 
weighted to control how much it contributed to the segmentation (Table 12).  The relative size of 
each object is determined by the scale parameter. In this study, a scale parameter of 20 was 
found to be the optimum size to identify best the plant communities.  Additionally, spectral and 
spatial parameters were set to contribute 70 percent and 30 percent, respectively to the segment 
boundary determination.  The result is a segmented image consisting of objects, each of which is 
treated as a single entity.  This is in contrast to per-pixel classifiers where each pixel is treated 
independently of all others, including its neighbors.  
 

Table 12. QuickBird band ratios used for image segmentation. The values indicate the weight applied in 
eCognition during image segmentation.  The July 20, 2004 2:1 ratio is the only one to not have a weight of 0.5 
due to the inclusion of the raw Quickbird bands from this date.  

Image Date Image Weights 
 Band 2 / 

Band 1 
Band 3 / 
Band 2 

Band 4 / 
Band 2  

Band 4 / 
Band 3 

Raw Bands 1, 2, 3, 4 LiDAR 

June 17, 2005 - - 0.5 0.5 - - 
July 2, 2004 0.5 0.5 0.5 - - - 
July 20, 2004 0 - - - Bands 1, 2, 3 = 0.8 

Band 4 = 1.0 
- 

August 13, 2006 0.5 0.5 0.5 0.5 - - 
September 12, 2004 0.5 0.5 - 0.5 -  
October 8, 2004 - - - - - 1.0 

 
Classification in eCognition uses training samples and/or rules.  The characteristics of the field 
spectra (Figure 22) guided the creation of image rules in eCognition (Figure 24).  Of the five 
simple band ratios calculated from the field reflectance spectra, four were determined to be most 
useful in identifying at least one major plant community from all others on the radiometry rule 
graphs (Figure 22).  The four band ratios (NIR/red, NIR/green, red/green, green/blue) were 
calculated for the five QuickBird images using image ratio models in Leica Geosystems’ 
ERDAS IMAGINE; the radiometry rules identified that 14 of these band ratio images could 
potentially be beneficial in classification by contributing to the separation of plant classes.  A 
polygon of the Ragged Rock Creek marsh was created to subset each band ratio image to 
eliminate variability from non-marsh features such as houses, trees and lawns.  One raw 
QuickBird image was also added to separate water from vegetated areas.  The LiDAR dataset 
was the final addition to the eCognition project.  One third of the field points were randomly 
selected to help guide the classification and the remaining two thirds were reserved for accuracy 
assessment.  Built-in eCognition tools also helped determined the final classification rules and 
quantitative thresholds (Figure 24). 
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Figure 24. Knowledge-based rules implemented in eCognition for classification of image objects.  High values of 
the September 12, 2004 NIR/red ratio and high values of LiDAR were used to classify P. australis segments.  
Middle values of June 17, 2005 NIR/green band ratio, high values of the August 13, 2006 red/green band ratio and 
middle heights of LiDAR identified Typha spp. objects.  High values of the July 20, 2004 green/blue band ratio and 
low values of the LiDAR height data determined S. patens objects. 
 
QuickBird classification results are displayed in Figure 25.  Qualitatively, the classification 
identifies contiguous areas of P. australis, Typha spp., and S. patens.  The distribution of these 
classes is broadly consistent with field observations, for example, the correlation of P. australis 
and anticorrelation of S. patens with creeks and ditches.  The classification confirms that the 
portion of Ragged Rock Creek marsh surveyed is dominated by the three species under study, 
where Typha spp. and P. australis, comprise 34% (44.3 hectares) and 23% (30.5 hectares) 
respectively, S. patens covers 21% (27.8 hectares), and other species cover 22% (28.3 hectares) 
of the Ragged Rock Creek marsh.  
 
An accuracy assessment of the classification results was performed where each validation point 
was assigned to a dominant class (Table 13).  The overall accuracy was 66.8% with a kappa 
coefficient of 0.56.  P. australis has the highest user’s accuracy (87.0%) and a high producer’s 
accuracy (76.9%).  Typha spp. has the lowest user’s accuracy (59.1%) but the highest producer’s 
accuracy (88.3%) indicating a misclassification of other/mixed reference points as Typha spp.  S. 
patens has a similar over classification with 32 points being classified as S. patens but being 
labeled other/mix in the validation dataset.  The result is 62% user’s accuracy for S. patens and a 
79.2% producer’s accuracy.   
 
Although great care was taken in assigning each point to a single dominant class, the assignment 
does not mimic real conditions on the marsh.  Few plots consisted of a single species and in most 
cases two or more species contributed to a shared co-dominance.  For example, of the 32 points   



 37

Figure 25. (a) July 20, 2004 QuickBird 4-2-1 image. (b) Classification result. 
 
 
Table 13. Error matrix for QuickBird classification. Reference data indicate dominant species.. 
Classified Data Reference Field Data 
Class P. australis Typha sp. S. patens Other/Mix Total Users 
P. australis 60 0 0 9 69 87.0%
Typha spp. 13 91 8 42 154 59.1%
S. patens 0 3 57 32 92 62.0%
Other/Mix 5 9 7 49 70 70.0%
Total 78 103 72 133 385  
Producers 76.9% 88.3% 79.2% 37.1%  
Overall 66.8%  
Kappa 0.56  

 
classified as S. patens but labeled other/mix in the reference set, 25 contained some S. patens and 
17 of the points had a higher percent cover of S. patens than any other species.  Two of the 
original 14 dominance classes were species mixes: P. australis with Typha spp. and S. Patens 
with Eleocharis spp.  In the six generalized dominance classes, these mixed class points were 
included in the other/mix class.  Another significant factor is the weighting included in the 
classification.  The weighting was necessary to account for the species that have a greater 
likelihood of being part of the upper canopy as tall, dense species often covering and hiding the 
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low-growing species.  This could result in a point with a very low percentage of P. australis and 
a high percentage of S. patens being labeled as P. australis-dominant.  For example, the three 
points in the accuracy table classified as S. patens but identified as Typha spp. all contained S. 
patens. 
 
Because of the difficulty in assigning continuous and complex floristic data to one single class, 
the accuracy table was re-calculated where the validation data are defined by the presence of the 
named species (Table 14).  This results in an increase in overall accuracy to 82.9% (kappa 
coefficient = 0.77) as well as producer’s and user’s accuracies in each category.  Seven of the 
nine points classified as P. australis but labeled other/mixed, contained some P. australis.  
Although all three species classes show a slight improvement in producer’s accuracy with P. 
australis going from 76.9% to 82.7%, Typha spp. changing from 88.3% to 92.9% and S. patens 
changing from 79.2% to 85.9%, the greatest improvement in producer’s accuracy occur in the 
other/mix class.  In this presence/absence accuracy table, reference points were moved out of the 
other/mix class and into the appropriate species class, leaving the other/mix class containing 
points that did not contain any P. australis, Typha spp. or S. patens.  In other words, the 
other/mix class more accurately represents other species. 
 
Table 14. Error matrix for QuickBird classification. Reference data indicate presence of species. 
Classified Data Reference Field Data 
Class P. australis Typha sp. S. patens Other/Mix Total Users 
P. australis 67  0 0 2 69 95.1%
Typha spp. 9 118 7 20 154 76.6%
S. patens 0 0 85 7 92 92.4%
Other/Mix 5 9 7 49 70 70.0%
Total 81 127 99 78 385  
Producers  82.7% 92.9% 85.9% 62.8%  
Overall 82.9%  
Kappa 0.77  

 
Barn Island Marsh 
An object-based classification was applied to the QuickBird imagery acquired 28 September 
2005. QuickBird data collected for the Barn Island study area were acquired from DigitalGlobe 
as a resolution enhanced product with 60-centimeter resolution (Figure 26a and 26b). eCognition 
was used to perform a hierarchical segmentation, the coarser level of which was used for 
separating water, marsh, and other, and the finer level being used for discriminating among 
marsh plant species and associations. Two other data layers were used in the segmentation and 
classification of the QuickBird data: the normalized difference vegetation index7 (NDVI) (Figure 
26c) and top-of-canopy height data, referred to as a Digital Surface Model (DSM), derived from 
ADS40 digital aerial imagery collected of the coast area of Connecticut in September 2004 
(Figure 26d). The latter was super-sampled from its original 2m resolution to 60cm and further 
geometrically registered to the QuickBird data. 
 

                                                 
7 NDVI = (NIR-Red)/(NIR+Red) 
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(a) QuickBird image the Barn Island Salt Marsh. 
Bands 3, 2, and 1. Acquired 28 September 2005. 

(b) QuickBird image the Barn Island Salt Marsh. 
Bands 4, 2, and 1. Acquired 28 September 2005. 

(c) Normalized Difference Vegetation Index 
(NDVI) of QuickBird image for the Barn Island 
Salt Marsh. Acquired 28 September 2005. 

(d) Digital Surface Model (DSM) derived from 
ADS40 aerial image data for the Barn Island Salt 
Marsh. Acquired September 2004. 

Figure 26. Examples of data used for the classification of tidal marshes for Barn Island Marsh, Stonington, CT. 
 
See5 was used to assist in the derivation of rules (Figure 27) for classification with eCognition. 
For the coarser level segmentation, 1,011 examples of water, marsh, and other were used to train 
See5. Of the 14 attributes provided to See5, four were used in the separation of these classes:  the 
Digital Surface Model,  the near infrared reflectance (QuickBird band 4),  the standard deviation 
of blue reflectance (band 2) within objects (an expression of texture), and NDVI, listed here in 
decreasing order of importance to the classification process. 
 
The coarse level segmentation and classification resulted in an overall accuracy of 98.42% for 
the 1,011 training area objects (Table 15). For the marsh class, producer’s accuracy, related to 
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errors of omission was 98.19%, and consumer’s accuracy, related to errors of commission or 
false inclusions, was 95.18%. An assessment of the accuracy of the final image-wide 
classification using independent test data had not been conducted. 
 
MeanADS40H > 3.78: Other (570) 
MeanADS40H <= 3.78: 
:...MeanNIR <= 127.52: Water (101/2) 
    MeanNIR > 127.52: 
    :...StdevBlue > 14.66: Other (73/2) 
        StdevBlue <= 14.66: 
        :...MeanNDVI > 199.39: Other (32/1) 
            MeanNDVI <= 199.39: 
            :...MeanADS40H <= 0.72: Marsh (195/6) 
                MeanADS40H > 0.72: 
                :...MeanNIR <= 259.11: Other (7) 
                    MeanNIR > 259.11: Marsh (33/5) 
Figure 27. Classification tree for QuickBird and DSM data for Barn Island: Coarse Objects and 
Three Classes. 
 
Table 15. Accuracy assessment of coarse level segmentation of 28 September 2005 QuickBird imagery for Barn 
Island.  
 

   Reference    

Classified 
As Water Marsh Other Totals 

Consumer's 
Accuracy 

Water 99 2 0 101 98.02% 

Marsh 1 217 10 228 95.18% 

Other 1 2 679 682 99.56% 

Totals 101 221 689 1011   

Producer's 
Accuarcy 98.02% 98.19% 98.55%     
      

Overall 
Accuracy 98.42%     
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Figure 28 presents the coarse level classification results for the entire Barn Island Marsh as well 
as a detailed portion. 
 

Figure 28. Coarse level segment classification 
performed with eCognition with rules generated from 
See5. ADS40 Digital Surface Model data were most 
important in separating these three classes, followed by 
QuickBird band 4, a measure of texture, and NDVI. 
  
 
For the finer level of detail, which was both spatial and thematic, marsh, as classified in the 
coarser segmentation, was further divided into Spartina alterniflora, Phragmites australis, High 
Marsh Mosaic (consisting of Spartina patens, Iva frutescens, Distichlis spicata, Juncus gerardi), 
and mud(flats), and water was divided into ditch, creek, and open water.  
 
Eight hundred objects were used to train See5 in developing the ruleset (Figure 29) for 
classifying these classes. Of 33 image attributes provided to See5, 12 were used in discriminating 
among the fine level classes, the top three being the standard deviation of red reflectance (band 
3), the Digital Surface Model, and the green reflectance (band 2). Of the other nine variables, 
three were shape metrics and one was a texture measure. 
 
The fine level segmentation and classification resulted in an overall accuracy of 91% for the 800 
training area objects (Table 16). Producer’s accuracy for Phragmites australis was 96.1% and 
consumer’s was 94.8%, and for Spartina alterniflora, it was 88.5% and 96.7%, respectively. 
Figure 30 presents the fine level classification results for the entire Barn Island Marsh as well as 
a detailed portion. 
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Table 16.  Error Matrix for Barn Island Classification. 

Classified Creek 
High 

Marsh Ditch Mud 
P. 

australis 
S. 

alterniflora Water Totals 
User’s 

Accuracy 

Creek 25     4  29 86.2% 
High 

Marsh  127   2 33  162 
78.4% 

Ditch      14  14 0.0% 
Mud    14  1  15 93.3% 

P. australis  3   73 1  77 94.8% 
S. 

alterniflora 4 9   1 406  420 
96.7% 

Water       83 83 100.0% 
Totals 29 139 0 14 76 459 83 800  

Producer's 
Accuracy 86.2% 91.4% n/a 

100.
0% 96.1% 88.5% 

100.0
%   

          
Overall 

Accuracy 91.0%         
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MeanNDVI <= 148.17: 
:...MeanNIR <= 62.26: Water (83) 
:   MeanNIR > 62.26: 
:   :...MeanGreen > 194.23: Mud (14) 
:       MeanGreen <= 194.23: 
:       :...StdevGreen <= 5.9: Creek (29/4) 
:           StdevGreen > 5.9: Spartina alterniflora (4) 
MeanNDVI > 148.17: 
:...MeanADS40H > 0.7: 
    :...StdevGreen <= 11.33: Phragmites australis (71/2) 
    :   StdevGreen > 11.33: 
    :   :...GLCMEntrop <= 4.3: High Marsh Mosaic (13/2) 
    :       GLCMEntrop > 4.3: Phragmites australis (5/1) 
    MeanADS40H <= 0.7: 
    :...MeanGreen <= 255.52: Spartina alterniflora (348/42) 
        MeanGreen > 255.52: 
        :...Length_wid > 3.23: 
            :...MeanADS40H > 0.05: High Marsh Mosaic (5/2) 
            :   MeanADS40H <= 0.05: 
            :   :...MeanNDVI > 186.55: Spartina alterniflora (28/1) 
            :       MeanNDVI <= 186.55: 
            :       :...StdevGreen <= 17.59: High Marsh Mosaic (3) 
            :           StdevGreen > 17.59: Spartina alterniflora (3) 
            Length_wid <= 3.23: 
            :...MeanNIR > 649.54: High Marsh Mosaic (21) 
                MeanNIR <= 649.54: 
                :...Borderleng <= 48: 
                    :...MeanADS40H <= 0.01: Spartina alterniflora (30/3) 
                    :   MeanADS40H > 0.01: 
                    :   :...Borderleng <= 31.2: Spartina alterniflora (2) 
                    :       Borderleng > 31.2: High Marsh Mosaic (3/1) 
                    Borderleng > 48: 
                    :...Rectangula <= 0.36: Spartina alterniflora (4) 
                        Rectangula > 0.36: 
                        :...MeanGreen <= 280.53: 
                            :...MeanNIR > 475.24: Spartina alterniflora (9) 
                            :   MeanNIR <= 475.24: 
                            :   :...MeanNIR <= 405.02: High Marsh Mosaic (6) 
                            :       MeanNIR > 405.02: [S1] 
                            MeanGreen > 280.53: 
                            :...MeanNDVI > 190.09: High Marsh Mosaic (21) 
                                MeanNDVI <= 190.09: 
                                :...MeanNDVI > 187.19: [S2] 
                                    MeanNDVI <= 187.19: [S3] 
 
SubTree [S1] 
 
MeanNIR <= 436.56: Spartina alterniflora (14/4) 
MeanNIR > 436.56: 
:...StdevNDVI <= 1.88: Spartina alterniflora (4/1) 
    StdevNDVI > 1.88: High Marsh Mosaic (17/2) 
 
SubTree [S2] 
 
MeanNIR <= 592.46: Spartina alterniflora (7/1) 
MeanNIR > 592.46: High Marsh Mosaic (5/1) 
 
SubTree [S3] 
 
StdevGreen > 19.38: Spartina alterniflora (3/1) 
StdevGreen <= 19.38: 
:...GLCMEntrop <= 4.76: High Marsh Mosaic (32/1) 
    GLCMEntrop > 4.76: 
    :...Rectangula <= 0.72: High Marsh Mosaic (13/3) 
        Rectangula > 0.72: Spartina alterniflora (3) 
 

Figure 29. Classification tree for QuickBird and DSM data for Barn Island: Fine Objects and Seven Classes. 
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Figure 30. Fine level segment classification performed 
with eCognition with rules generated from See5. 
ADS40 Digital Surface Model data were most 
important in separating these three classes, followed 
by QuickBird band 4, a measure of texture, and NDVI. 
 

 
 
 
Flax Pond: A single level hierarchical object-based classification was conducted for the Flax 
Pond marsh. eCognition software was used to perform an image segmentation using the four 
band John Deere Agri Services multispectral image, derived NDVI image, and derived principal 
components analysis band 1 image (PCA 1 produces a general overall brightness image). 
Segmentation parameters include a scale parameter of 60, color criteria of 0.9, shape criteria of 
0.1 with a smoothness criteria of 0.9 and compactness criteria of 0.1. The input layers were all 
weighted to 1.0. Image objects that represented 11 land cover categories were selected as training 
data. For the classification process, the aforementioned data layers in addition to PCA 2, 3, and 4 
and an elevation data digitized from a Digital Raster Graphic were included. The elevation 
information served to enhance the classification by providing additional separation among low 
elevation water and marsh categories from upland categories. A standard nearest neighbor 
classification was applied to the mean values of each data layer. Following the initial 
classification, the objects were further edited onscreen to eliminate classification errors. The 
resulting classification is provided in Figure 31. An overall accuracy is reported to be 87.50% 
based on 200 stratified random samples. The error matrix is provided in Table 17. 
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Object-based classification based on John Deere Agri 

Services digital imagery 

 

  
John Deere Agri Services digital image 

September 18, 2006 
Object-based Classification 

Colored vectors represent areas of different vegetation collected using a GPS receiver. Red identifies S. patens, 
orange identifies S. alterniflora, and green identifies I. frutescens 

  
John Deere Agri Services digital image 

September 18, 2006 
Object-based Classification 

Colored vectors represent areas of different vegetation collected using a GPS receiver. Red identifies S. patens, and 
orange identifies S. alterniflora 

Figure 31. Classification of John Deere imagery for Flax Pond, located on Long Island. 
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Table 10. Error matrix for John Deere classification of Flax Pond. 
  Reference 
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1 13 0 0 0 0 0 0 0 0 0 0 13 100 
2 0 36 0 0 0 0 0 0 0 0 0 36 100 
3 0 0 36 0 0 0 0 0 0 0 0 36 100 
4 0 0 1 9 2 0 0 0 0 0 0 12 75.0 
5 0 1 0 1 10 0 0 0 0 0 0 20 90.0 
6 0 0 0 0 1 12 0 0 0 1 0 14 85.7 
7 0 1 0 0 1 1 8 3 0 0 0 14 57.1 
8 0 0 0 0 0 0 0 17 0 0 0 17 100 
9 0 3 0 0 0 0 0 0 7 2 0 12 58.3 

10 0 0 0 0 2 0 0 2 0 8 0 12 66.7 
11 0 3 0 0 0 0 0 0 0 0 11 14 78.6 

TOTAL 13 44 37 10 24 13 8 22 7 11 11 200  

C
la

ss
ifi

ed
 

Producer 
Accuracy 

100 81.8 97.3 90.0 75.0 92.3 100 77.2 100 72.7 100   

 
Number Correct = 175 out of 200 
Overall Accuracy = 87.50% 
Overall Kappa Statistic = 0.8583 
 
Task 3.  Determination of optimal spatial, spectral, and temporal resolutions for coastal 
wetland system characterization.  

 
Coastal Marsh Classification 
The primary considerations for selecting digital image data pertain to the spectral and spatial 
resolution of the data. The spectral resolution refers to the number of unique portions of the 
electromagnetic spectrum that are collected by a sensor. The spatial resolution refers to the size 
of the picture element or ground unit collected by the sensor. This project examined both 
moderate spatial resolution imagery (Landsat ETM and ASTER) for the purpose of identifying 
the location of coastal marshes within Long Island Sound, and high spatial resolution imagery 
(QuickBird, ADS40, John Deere AgriServices) for the purpose of mapping dominant marsh plant 
species for selected coastal marshes. 
 
Findings from this project indicate that Landsat satellite imagery is moderately effective at 
identifying the presence of coastal marshes (larger then 2 acres) throughout the Sound, but is not 
effective at clearly delineating the full extent of the coastal marshes. Although spectrally 
capable, the spatial resolution (30 meters) was found to be a detriment when attempting to 
delineate accurately the extent of each individual coastal marsh. Problem areas were found to 
occur near the boundary between the tidal marshes and upland forested areas and within the high 
marsh complex where there is confusion between tidal marsh and upland features. Small tidal 



 47

marsh complexes are difficult to detect due to the spatial resolution of the Landsat sensor being 
larger then many of these marsh areas and the associated mixed pixels that subsequently occur. 
In addition, the distinction between high marsh and low marsh was not accurately determined. 
The problems with the spatial resolution were found to be compounded when using different 
Landsat scenes to attempt to monitor changes in the size and shape of the marshes. The Landsat 
derived data were, however, found to be effective at providing an assessment of marshes at 
potential risk of degradation due to surrounding anthropogenic activities and habitat. 
 
ASTER satellite imagery, with its slightly better spatial resolution (15 meters) in three out of 
nine spectral bands was expected to provide improved classification results over the Landsat 
image classification. A side-by-side classification and comparison between the ASTER and 
Landsat ETM sensor found no significant improvement. Because of this, the Landsat ETM 
sensor would be a better choice for coastal marsh identification due to the fact that a single 
Landsat image would only be needed to cover almost the entire Long Island Sound compared to 
multiple ASTER images to cover the same area. In addition, more Landsat images are regularly 
collected for the Long Island Sound region. 
 
It was not expected that the moderate spatial resolution imagery would be able to detect 
dominant marsh plant species in the coastal marshes of Long Island Sound due to the spatial 
resolution of these sensors on the relatively small size and vegetative complexity of the coastal 
marshes. To truly characterize the vegetation of the coastal marshes, higher spatial resolution 
imagery is needed. Although this research project was originally designed to examine only the 
QuickBird satellite sensor to assess its efficacy for classifying coastal marshes, due to acquisition 
problems and the availability of other sensor products, other sources of high spatial resolution 
imagery were also examined. 
 
Findings indicate that higher spatial resolution digital imagery, whether it is from satellite 
(QuickBird 2.44 meter spatial resolution) or aircraft (ADS40 0.5 meter spatial resolution and 
John Deere AgriServices 0.3 meter spatial resolution) is capable of identifying the dominant 
plant species within the coastal marshes of Long Island Sound. Although having less spectral 
resolution than both the Landsat and ASTER images (four bands for the higher resolution images 
versus seven or nine bands for Landsat and ASTER, respectively), enough information was 
present to conduct a reasonable classification. While spectral data alone from these sensors could 
produce a highly accurate classification result, it was found that the addition of elevation data, in 
the form of LiDAR or the ADS40’s Digital Surface Model (DSM) improved the classifications 
in terms of both helping to identify the low lying flat areas that constitute the marsh area and also 
with identifying variations in height of different marsh plant species. 
 
Identification of Vegetation within Coastal Marshes 
The spectral characteristics of vegetation are due to leaf pigments, plant structure (biomass and 
canopy architecture and cover) and plant health throughout the phenological cycle.  The 
variability observed in individual reflectance spectra is replicated when these spectra are 
resampled to QuickBird (or other sensor) bands.  Much of the spectral variability in the 
resampled data can be attributed to expected increases in plant pigments and biomass during the 
green-up phase of plant growth, and the decline of these parameters during senescence.  The 
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magnitude and rate of these changes is found to differ in individual species allowing their 
spectral discrimination at specific times during the growing season.   
 
Many studies have shown a correlation between the near-infrared reflectance of vegetation and 
biomass in general and in marsh species in particular (e.g. Drake, 1976; Hardisky et al., 1984; 
1986; Gross et al., 1993; Zhang et al., 1997).  This effect is seen in the resampled data where P. 
australis and Typha spp., both dense monocultures ≥ 2 meters high, have higher NDVI, NIR/red 
and NIR/green values throughout the growing season than the low-growing S. patens (Figures  
4a, 4b, 4e).  NIR index values peak for Typha spp. in the mid- late-June, corresponding to field 
observations of peak plant heights of ≥ 2 meters, full development of flowers and wholly green 
leaves.  P. australis displays peak NIR index values in mid-August to early-September 
correlating to peak plant heights of ≥ 3 meters and the development of flowers.  Additionally, by 
late August, Typha spp. leaves are mostly brown, exacerbating the NIR distinction between the 
two species on this date.  The differences in the timing of peak biomass between Typha spp. and 
P. australis were used to discriminate between these two species in the classification.  The late 
season peak in NIR reflectance for P. australis (Artigas & Yang, 2005; 2006; Gao & Zhang, 
2006) and its distinction from Typha spp. (Laba et al., 2005) has been noted in other marshes. 
 
Some of the variability in the spectral indices can be correlated to genetic differences in pigment 
concentrations among the three species.  The green/blue ratio of S. patens is dramatically higher 
than that of P. australis or Typha spp. from mid- June through late August (Figure 21c).  We 
attribute this to inherent differences in the amount of chlorophyll b and carotenoids in these 
species, both of which absorb in the blue portion of the spectrum (Figure 20).  This effect can be 
seen in the field, where both P. australis and Typha spp. leaves are observed to have a slight 
bluish hue.  The peak in the green/blue index for S. patens in mid- July corresponds to maximum 
pigment concentration at this time of year.  This is also the time of peak biomass of this species 
as recorded in the NIR ratios, however the NIR indices for S. patens are not distinct from the 
other species at this time.   
 
Typha spp. also displays seasonal changes in pigment concentrations that were useful for 
classification.  Values for the red/green index are higher for Typha spp. than the other species in 
early August (Figure 21d) likely due to a reduction in leaf chlorophyll pigments during 
senescence in this species at this time.  The timing of Typha spp. senescence is also observed in 
the NIR and thus both the red/green and NIR/green indices were utilized to distinguish Typha 
spp. in the classification. 
 
The resampled spectral data generate the following set of spectral rules that may be applicable to 
the distinction of P. australis, Typha spp. and S. patens communities: 1) P. australis is best 
distinguished by its high NIR response late in the growing season due to its high biomass 
especially with respect to the other species, 2) Typha spp. is best distinguished by NIR response 
in June and high red/green response in August which correspond to peak biomass and 
senescence, respectively, and 3) S. patens is best distinguished by pigment differences that result 
in a unique green/blue ratio throughout the growing season, peaking in July.  These indices 
suggest that multispectral data such as QuickBird is adequate to measure and distinguish 
remotely the phenological spectral characteristics of these species.  Silvestri (2002) shows that 
the error in field reflectance data is always greater than at larger scale, predicting that species 
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should be even more spectrally separable in image data than in the ground data.  The data further 
suggest that if these phenological relationships hold from year to year, these rules can be applied 
to single date multispectral data to look for particular species.  For example, our observations 
lead us to recommend acquisition of color infrared or four-band satellite data during late August 
to early-September to facilitate detection of P. australis. 
 
The phenological trends seen here can vary as a function of plant vigor, which may depend on 
changes in salinity, weather, predation or disturbance.  That these trends are consistent over two 
years at two separate areas of Ragged Rock Creek marsh suggests that these rules may have 
broader spatial and temporal application, but are perhaps best limited to regions of consistent 
climate. 
 
The classification results indicate that P. australis is most accurately identified due to the fact 
that P. australis is generally a dense monoculture and that in the late summer it was observed to 
be approximately 1 m taller than the next tallest species.  These characteristics combine to result 
in a high biomass and consequent NIR response that is greater than the other species.  The plant 
height also distinguishes P. australis in the LiDAR data (Figure 32).  While the use of LiDAR as 
a sole discriminant could identify a large proportion of P. australis occurrences, the spectral 
characteristics are necessary to distinguish between P. australis and Typha spp. because there is 
considerable overlap in the height data. 
 

 
Figure 32. Histograms of the LiDAR height of each ground point displayed based on 
dominant class.   

 
The validation results for all species improved when considering presence/absence of species in 
place of dominant species.  Yu et al. (2006) report a criteria discrepancy when classifying 
vegetation using high-spatial resolution imagery and eCognition.  They found that the criteria 
discrepancy between image classification and vegetation field mapping results in misleading 
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accuracies when traditional methods are employed.  They found that when ecological associates 
are incorporated into accuracy assessment, the classification accuracy improved.  Treating the 
validation points in this study as presence/absence had the same results.  The greatest increase in 
accuracy was the reduction of commission errors for S. patens, which we suggest results from its 
distribution as understory in many of the validation quadrats.  In these situations, the spectral 
signature of S. patens contributes to the signal even if taller species dominate the LiDAR first 
return (canopy) data.  S. patens was most often confused for bare ground/flotsam/wrack, which 
are all low-lying and spectrally bright and for other low growing species such as blackgrass 
(Juncus gerardii), bentgrass (Agrostis stolonifera) and switchgrass (Panicum virgatum). 
  
Typha spp. commission errors include P. australis and a number of other species.  Many of these 
species, like P. australis, are observed to occur at similar heights (approximately 1 – 2 m) to 
Typha spp. during the middle part of the growing season, including sedges (Schenoplectus 
species) and bulrushes (Bolboschoenus species).  The wide range of species that are confused 
with Typha spp. is likely exacerbated by the fact that it covers the most area of the marsh as well 
as its lack of an extreme, defining spectral or height rule.  Both P. australis and S. patens have 
extremes in the LiDAR data (tallest and shortest, respectively) and have one band ratio that is 
quite distinct (late season NIR/red and mid-season green/blue, respectively).  The lack of 
extreme spectral and height values for Typha spp. increases the potential for confusion and error. 
   
The radiometry rules (Figure 21) make clear the necessity of multi-temporal imagery for 
mapping multiple species on a complex tidal marsh.  When the objective is to map and isolate a 
single species such as P. australis for management, a single date of imagery could be adequate.  
However, the growth habit of the numerous marsh species on the Ragged Rock marsh necessitate 
multi-temporal data.  Other studies have found similar benefit from incorporating multitemporal 
imagery into vegetation mapping (Carleer and Wolff, 2004; Dennison and Roberts, 2003). 
 
Task 4.  Outreach and Education Plan 
The World Wide Web provides an excellent vehicle for the dissemination of information to a 
broad audience. As such, we have developed and published a website that provides the results 
and information regarding this project. The site can be accessed at:  
 

http://clear.uconn.edu/projects/tidal_marsh/tidal_marsh.html  
 
Within this site, information regarding the purpose of the project, data used for analysis and 
classification, results of classifications, comparison of various image types, and 
recommendations can be found. Figure 33 through 36 provide samples of the webpage content. 
 
In addition to the dissemination via the website, information from this project will be 
incorporated into various ongoing educational programs within CLEAR. Most notably these 
include Focus on the Coast8 and the Community Resource Inventory9. Further, the information 
derived in this project will be incorporated in NEMO Sea Grant educational programs focused on 
coastal communities. 
 
                                                 
8 http://nemo.uconn.edu/tools/fotc/index.htm  
9 http://nemo.uconn.edu/tools/cri/index.htm  
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Figure 33. Project Homepage.  
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Figure 34. Project Website: Imagery comparison page. 
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Figure 35. Project Website: Examples of salt marsh plant species in different remote sensing imagery. 
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Figure 36. Project Website: Examples of salt marsh plant species in different times of the year and corresponding in 
situ spectral reflectance curves. 
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Summary of Findings and Recommendations  
 
Delineation and monitoring of coastal marshes 
We have developed semi-automated techniques for the classification of Landsat imagery into 
water, upland, and marsh categories.  These techniques are based on pixel and object-oriented 
classification.  The techniques have a high classification accuracy and are repeatable on images 
collected at different times.  Using these techniques, we have produced a map that inventories 
the location of marshes around the whole of Long Island Sound in September of 2002 (Figure 8).  
These techniques could be applied to other Landsat images to track the distribution and extent of 
marshes over time although the spatial resolution of the Landsat image and the size of change 
occurring within the coastal marshes could become problematic (Figure 17).   
 
A benefit of Landsat imagery is that a single path captures almost the entire Long Island Sound 
region (excluding the extreme eastern part of the Sound) thereby eliminating any temporal or 
radiometric resolution issues that are typical of aerial surveys.  With a revisit time of every 16 
days, acquisition of useable imagery is dependent on the atmospheric conditions of the area. If 
the timeframe is limited to just the July through September growing season, there is only the 
possibility of six or seven scenes that could be collected. 
 
Landsat imagery, which has 30 meter spatial resolution, is useful for identifying the general 
location of coastal marshes but is too coarse to capture accurately their full extent and detail. 
ASTER imagery, while having higher spatial resolution in the visible to near-infrared portion of 
the electromagnetic spectrum did not perform any better in terms of classifying coastal marshes. 
A significant drawback to the ASTER imagery is the inconsistent temporal resolution (lack of 
quality growing season imagery) and the footprint size of the ASTER imagery (several scenes 
are required to cover the entire Sound area).  QuickBird satellite imagery has a higher spatial 
resolution (2.44-meters multispectral) that is capable of capturing the full extent of the coastal 
marshes within the Long Island Sound area. Another advantage is the ability to point the sensor 
off nadir providing for additional opportunities for collection and avoiding poor atmospheric 
conditions. The drawbacks to the sensor are the north-south orientation of the path of the sensor 
thus requiring numerous scenes to be collected to cover the full extent of the Sound. It is 
extremely difficult to obtain a temporally consistent set of image data because of this. 
 
The classification methodologies developed here for Landsat were combined with ancillary data 
sets such as elevation, impervious surface and other land cover classification to analyze a subset 
of marshes in the context of their surrounding land cover.  Elevation data provide an advantage 
to the classification process as long as the data are of sufficiently small spatial resolution to have 
several data pixels fall within the upland boundaries of the coastal marsh. Additionally, the 
elevation accuracy is very important.  This experiment was able to identify the relative 
magnitude of environmental pressures (e.g., sea level rise, urban and suburban development) on 
each marsh (Figure 16).  The combination of factors was used to derive an environmental risk 
assessment for select marshes.  This could be used to 1) identify marshes that are in need of 
attention, 2) identify the possible causes for increased risk in each marsh, 3) monitor the changes 
in marsh health through time and in response to mitigation strategies.  The analyses employed 
here are flexible, allowing the addition of other georeferenced data if such data were to become 
available (e.g., pollutants).   
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The classification approaches used in this project can be adapted by other researchers in other 
GIS-based applications to address other environmental and management objectives.   
 
Identification of vegetative species within marshes 
We have developed a semi-automated classification methodology using QuickBird data to 
identify and differentiate the dominant species P. australis, S. patens and Typha spp. in Ragged 
Rock Creek Marsh.  Critical to the success of this task was 1) the use of image data of high 
enough resolution to be comparable to the stands of plants under study (meter scale), and 2) 
documentation of the phenology of plants throughout the growing season to predict the spectral 
response of each species through time.   
 
Our field surveys find that for Connecticut: 

1. P. australis is best distinguished by its high NIR response late in the growing season due 
to its high biomass especially with respect to the other species.  

2. Typha spp. is best distinguished by NIR response in June and high red/green response in 
August which corresponds to peak biomass and senescence, respectively.  

3. S. patens is best distinguished by pigment differences that result in a unique green/blue 
ratio throughout the growing season, peaking in July. 

 
The phenological variability seen in the field spectra was repeatable at Ragged Rock Creek over 
two field seasons, appears to be representative of the behavior of these species at other marshes 
in CT based on our more limited field surveys of 2004, and appears to coincide with the behavior 
of P. australis at NY and NJ marshes based on comparison to the literature (Artigas and Yang, 
2005; 2006; Laba et al., 2005).  To our knowledge, these are the only field spectra collected of 
marsh vegetation in CT, and as such should serve as a baseline for future remote sensing and 
ecological research.  The spectra are inventoried and available on our web site for use by other 
researchers.   
 
We have shown that the behavior the high spectral resolution field data is recognizable in the 
coarser spectral resolution QuickBird data and that high spatial resolution, moderate-resolution 
multispectral data such as QuickBird are adequate to measure and distinguish remotely marsh 
vegetation.  This should also apply to other four-band data sets including NIR aerial 
photography, where, for example, P. australis could be recognized in the early fall as having the 
highest NIR response in a single image.  The benefits of remotely sensed data over aerial 
photographs in this example are clear: 1) the remote sensing data are already radiometrically and 
geometrically corrected allowing mosaicking of scenes over larger areas than a single aerial 
photo, and 2) the remote sensing data allow for procedures such as ratioing that eliminate noise 
due to atmospheric variability. 
 
The radiometry rules make clear the necessity of multi-temporal imagery for mapping multiple 
species on a complex tidal marsh due to the growth habit of the numerous marsh species. When 
the objective is to map and isolate a single species, a single date of imagery could be adequate.  
This is likely the case for the recognition of P. australis, where acquisition of a single date of 
imagery late in the growing season would be adequate for inventory and monitoring.  For P. 
australis monitoring, we suggest that current aerial surveys be flown late in the growing season 
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and/or that these surveys be replaced by or augmented with high resolution satellite or aerial 
remote sensing data such as QuickBird, ADS40 or John Deere data.  The advantages to the 
ADS40 and John Deere data over QuickBird are the higher spatial resolution and the temporal 
flexibility afforded by flying aerial surveys. 
 
Top of canopy information derived from LiDAR or other data source capable of capturing plant 
canopies, such as ADS40 Digital Surface Model (DSM) data, is an added advantage for 
identifying various plant species. The success of using such information is dependent on the stem 
and crown density of the plant community being measured (areas with low plant density are not 
as easily identified) and there being sufficient height differences among the plants being 
classified.  
 
Conclusions 
 
Remote sensing is a powerful tool for the classification of land cover.  It offers a synoptic view 
of a large region, the data are acquired through time and the data are in a format that is 
compatible with a variety of georeferenced data sets.  In this project, we sought to determine how 
best to utilize these data to inventory marshes around the whole of Long Island Sound.  Such an 
inventory is a fundamental data set for research scientists and managers necessary to map the 
distribution of marshes through time.  We have found that 30 m Landsat data is adequate to 
distinguish marshes from upland areas and water.  The data have the benefit of being low cost 
(~$400/scene) and cover large contiguous regions of the Sound.  The classification methodology 
developed here has high accuracy and is found to be repeatable on images acquired on different 
dates.   
 
We combined the Landsat classification with other data sets to evaluate several environmental 
and anthropogenic factors affecting a subset of marshes.  This is possible because of the spectral 
and spatial information contained in remote sensing data, allowing the identification of variables 
(e.g., land cover) and their effect on marsh health (e.g., proximity).  The data sets were combined 
to produce a marsh risk assessment, which could be very useful to land managers seeking to 
understand marsh health and evaluate remediation efforts.  The data sets themselves also provide 
information to scientists as to the types and influence of various factors on marsh health.  Thus, 
both the classified Landsat image provided in Figure 8a and the methodology utilizing multiple 
remote sensing and spatial data sets directly addresses fundamental questions about the marshes: 
where are they, how healthy are they, and are they changing?  Detailed field surveys, which are 
not routinely conducted for all of the marshes throughout the year, will add valuable information 
to place these larger data sets in context and vice versa. 
 
We find that high resolution (meter scale) remote sensing data are adequate to inventory major 
vegetative species within individual marshes.  These image data are classified based on our new 
understanding of the variation in the spectral reflectance properties of each species throughout 
the growing season determined by in situ radiometric measurements in the field.  These field 
spectra are unique in Connecticut and can serve as a baseline for research on the phenological 
variability of major marsh species.  We have demonstrated that the spectral variability seen in the 
field is also apparent at the sensor.  The field data show that S. patens, Typha spp. and P. 
australis are spectrally recognizable and distinct from one another at certain times of year.  P. 
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australis is best recognized by its high NIR response late in the growing season.  Thus it should 
be recognizable in a variety of data sets that include NIR reflectance.  As the invasive P. 
australis is of concern to managers and is actively being remediated across Connecticut, the 
classification methods outlined here offer a new way to inventory P. australis and monitor its 
change through time.  
 
These image data and classification technologies developed here provide the tools to assess 
routinely the distribution of coastal marshes and P. australis within those marshes.  These data 
are critical to understanding the forces driving environmental change and to evaluate and guide 
management practices.  We recommend acquisition of the following data sets to continue to 
make these measurements through time:  
 
1. Annual acquisition and classification of Landsat images for marsh inventory.  3 Landsat 

scenes are required to cover the whole of Long Island Sound @ ~ $400 per scene.  The 
scenes should be acquired sometime during the growing season when the marshes contain 
live vegetation. 

2. Replacing or augmenting current aerial photo surveys with high resolution (submeter) aerial 
multispectral digital images of entire coast to inventory P. australis and other species.  To 
identify P. australis, the survey should be in late August/ early Sept.  The cost of ADS40 
image data for 36 coastal communities = $100K. 
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