Carrying Capacity and Economic Considerations for Shellfish Aquaculture

Hauke Kite-Powell Marine Policy Center Woods Hole Oceanographic Institution

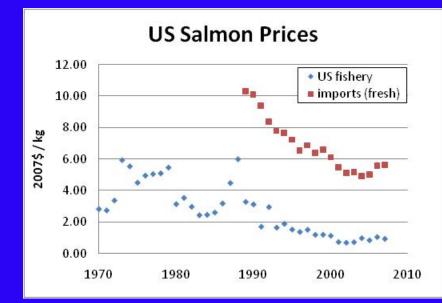
Bioextractive Technologies Workshop December 2009

#### Outline

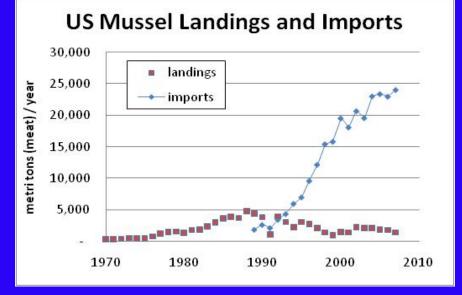
- Ecological effects of shellfish mariculture
- Carrying capacity concepts
- Shellfish farming and nutrient levels in Waquoit Bay, Cape Cod
- Economic approach to social carrying capacity

# List of Ecological Effects (1)

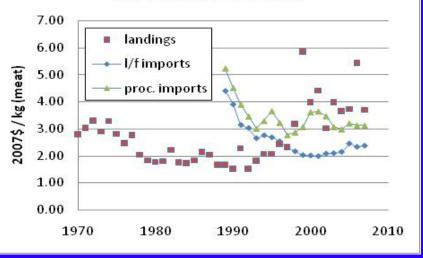
- Nutrient cycling
  - N cycle
  - Removal of nutrients & larvae
- Benthic flora
- Finfish & mobile crustaceans
- Marine mammals, turtles, birds


# List of Ecological Effects (2)

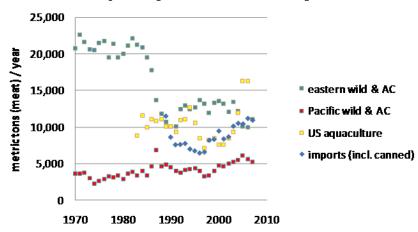
- Exotic species
- Disease concentration & transmission
- Genetic effects
- Effects on fishing pressure


[NRC report now in review]

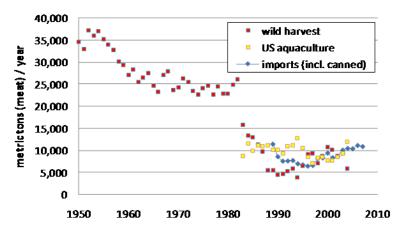
### Aquaculture & Wild Fisheries: Salmon


**US Salmon Landings & Imports** 500.000 Iandings 450.000 imports 400.000 350,000 nt / year 300.000 250,000 200,000 150.000 100.000 ... 50,000 0 1970 1980 2000 1990 2010




#### **Aquaculture & Wild Fisheries**




#### **US Mussel Prices**



#### **US oyster production & imports**



**US oyster production & imports** 



# List of Ecological Effects (2)

- Exotic species
- Disease concentration & transmission
- Genetic effects
- Effects on fishing pressure

#### \*\* Carrying Capacity \*\*

# **Carrying Capacity Concepts**

- Physical Carrying Capacity maximum farming activity in the available physical space (Inglis *et al.* 2000)
- Production Carrying Capacity the stocking level or density that maximizes production harvests (Kaiser and Beadman 2002)
- Ecological or Ecosystem Carrying Capacity the stocking level or density above which "unacceptable" ecological impacts arise (McKindsey *et al.* 2006)









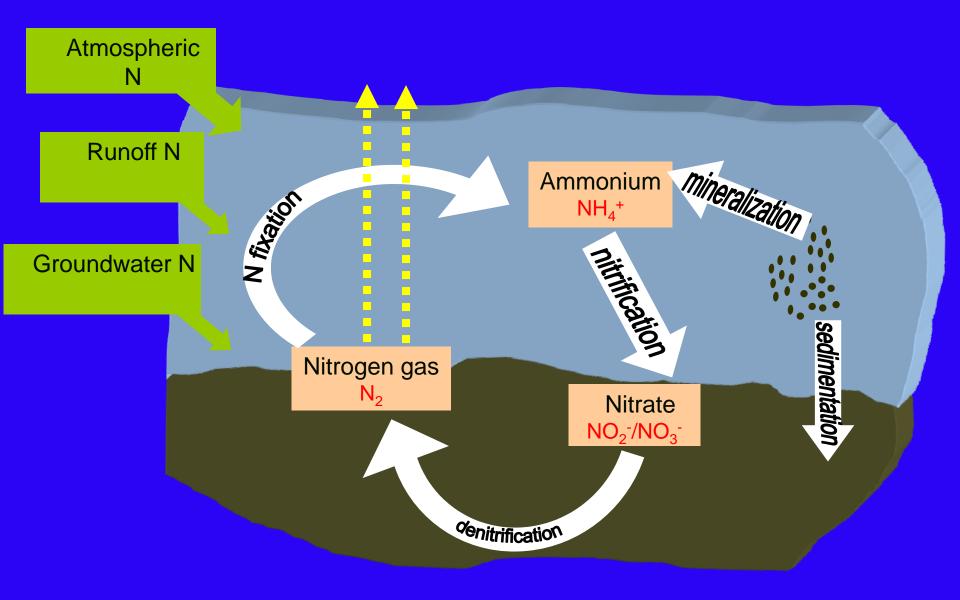
# **Carrying Capacity Concepts**

- Physical Carrying Capacity maximum farming activity in the available physical space (Inglis *et al.* 2000)
- Production Carrying Capacity the stocking level or density that maximizes production harvests are maximized (Kaiser and Beadman 2002)
- Ecological or Ecosystem Carrying Capacity the stocking or density above which unacceptable ecological impacts arise (McKindsey *et al.* 2006)
- Social Carrying Capacity the maximum extent of farming that avoids unacceptable recreational/aesthetic impacts (Gibbs 2007, 2009)

physical CC > production CC > ecological CC > social CC

# Waquoit Bay (E. Falmouth)




 N loading has increased with development

Recurring problems with algal blooms

#### Oyster & Hard Clam Growout Experiment



#### Simplified Nitrogen Cycle



#### **Eutrophication**

- N loading increase
- Changes in nutrient cycle

   N is limiting nutrient
   Algal blooms
- Anoxia, fish kills
- Eelgrass loss



## **Addressing Eutrophication**

#### <u>Upstream</u>

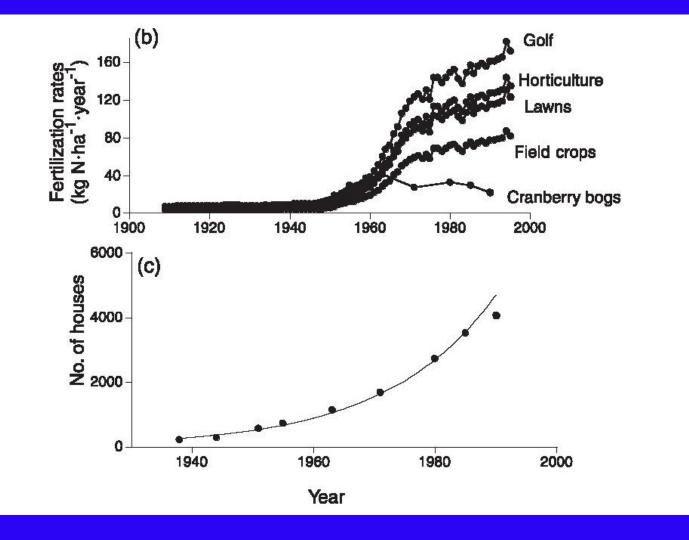
- Land-use regulations
  - Pollutant tax
  - Discharge permit system
- Alternative septic systems
- Centralized sewage treatment facility
- <u>Downstream</u>
  - Shellfish aquaculture

#### Nitrogen Removal: Oysters



 1 square meter tray: 500 oysters

 year
 1
 2
 3


 incr. denitrif. (kg)
 0.01
 0.31
 0.60

 harvesting (kg)
 - - 0.31

0.01 0.31 0.91

average: 0.41 kg N per m<sup>2</sup> per year

#### Land Development: Waquoit Bay Watershed



Source: Bowen & Valiela 2001

#### Nitrogen Loading to Waquoit Bay Watershed (kg/year)

|                        | 1990s   |           | 1930s   |           |
|------------------------|---------|-----------|---------|-----------|
|                        | N input | % of load | N input | % of load |
| Atmospheric deposition | 95,500  | 59        | 91,300  | 95        |
| Fertilizer             | 30,500  | 19        | 3,200   | 3         |
| Wastewater             | 35,700  | 22        | 2,100   | 2         |
| Total                  | 161,700 | 100       | 96,600  | 100       |

Valiela, I. *et al.* (1997) Ecol. App., 7(2): 358-380

Bowen, J. and Valiela, I. (2001) Can. J. Fish. Aquat. Sci., 58: 1489-1500

#### Nitrogen Loading to Waquoit Bay Estuary (kg/year)

|                        | 1990s   |           | 1930s   |           |
|------------------------|---------|-----------|---------|-----------|
|                        | N input | % of load | N input | % of load |
| Atmospheric deposition | 9,100   | 38        | 8,400   | 77        |
| Fertilizer             | 4,700   | 19        | 1,700   | 16        |
| Wastewater             | 10,500  | 43        | 700     | 7         |
| Total                  | 24,300  | 100       | 10,900  | 100       |

Valiela, I. *et al.* (1997) Ecol. App., 7(2): 358-380

Bowen, J. and Valiela, I. (2001) Can. J. Fish. Aquat. Sci., 58: 1489-1500

#### **N** Load Reduction

Objective: "eliminate" increased N loading to Waquoit Bay since 1930s: 13,400 kg/yr

Economic efficiency: reduce N using least cost options first.

### **Management Options**

Upstream options:

- Atmospheric deposition: limited scope, esp. short term
- Fertilizer application: possible, but limited scope
  - 50% reduction in application -> 2,700 kg N/yr into estuary, = 20% of target only
- Wastewater treatment: possible, but expensive
  - 2.7 kg N/yr/home into estuary; cost to eliminate is \$500/yr/home
  - Onsite denitrifying septic system: 65% effective
  - Neighborhood sewage treatment: 80% effective
  - Large-scale sewage treatment: 90+% effective

# **Management Options**

Downstream option: shellfish farming

- Benefits
  - Removal of N
  - Net value of shellfish production
- Costs:
  - Change in value of real estate
  - Change in value of recreational benefits

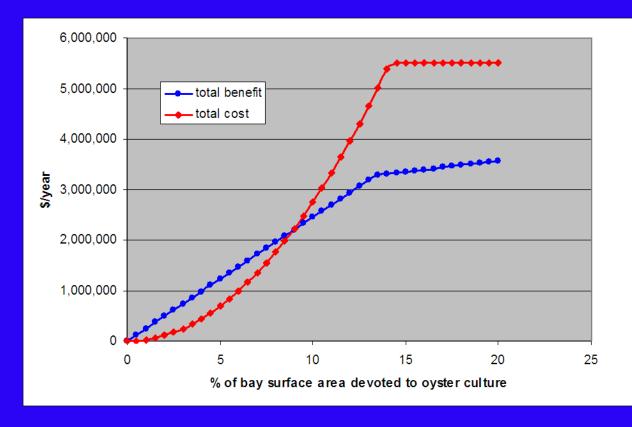
#### - Likely order of alternatives:

- Shellfish farming
- Fertilizer application
- Wastewater treatment

#### Waquoit Bay N Management

- Objective: "mitigate" increased N loading to Waquoit Bay (13,400 kg/yr)
- Question: what is the potential contribution of oyster farming to this objective?
- Removing 13,400 kg N/yr requires some 90,000 m<sup>2</sup> devoted to oyster farming. Is this feasible?

#### **Economic Model of Social CC**


benefit = avoided cost of upstream control measures
 + economic surplus of shellfish farm operations

avoided cost: \$185/kg/yr

• surplus: 20% of farmgate sales

- cost = loss of real estate value (aesthetic) plus loss of recreational value
  - coastal location premium 30% on mean value of \$300,000 for 1,000 homes in WB area
  - recreational value 50,000 person-days/yr at \$20

#### **Benefit and Cost of Oyster Farming**



 max. net benefit at 4% of WB area

- C > B at 8% of WB area
- 8% could remove 8,000 kg N/yr, or 60% of target

Note: TBD:
Production C.C.? – probably OK
Ecological C.C.? – not yet studied

# Conclusions (1)

- Shellfish farming can have a wide range of ecological effects
  - Extent of effects depends on scale, nature of farming operations
  - Typically more "benign" than finfish farming
- Shellfish farming can play a significant role in providing protein for growing world population
  - Many coastal regions are underutilized
  - Can be ecologically neutral or beneficial, depending on scale and setting

### Conclusions (2)

- Shellfish farming can play a substantial role in managing N levels in coastal waters
  - not a "magic bullet" (setting has to be right)
  - physical/ecological carrying capacity must be adequate
- In the U.S., social carrying capacity is often likely to be a binding constraint
  - socially optimal level of farming depends on local preferences and perceptions
  - community-level aquaculture management plans are a good idea

#### Closing Thoughts for Shellfish Aquaculture Managers & Growers

- Think in terms of tradeoffs, carrying capacity, acceptable levels of effects
- Invest in community relations (social carrying capacity is negotiable)
- Invite marine scientists along
  - Bio-geo-chemical links
  - Species interactions
  - Bio-economics

#### Acknowledgments

Heidi Clark, WHRG Dror Angel, NCM Israel Kevin Kroeger, USGS

Jessica Bell and Megan Bela, Summer Student Fellows

Waquoit Bay National Estuarine Research Reserve WHOI Marine Policy Center NOAA/UNH Cooperative Institute for Coastal and Estuarine Environmental Technology