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The CTDEEP also provides data on phytoplankton community composition obtained by pigment analysis 
starting from April 2002. Pigment concentrations are measured using High Performance Liquid 
Chromatography (HPLC), compared to known photopigment ratios of communities from LIS, and analyzed on 
Chemtax in order to estimate the contribution by each group (CTDEEP, 2005). All samples were taken from a 
depth of 2m. Analyzed taxonomical groups of phytoplankton included Bacillariophyceae (diatoms), 
Dinophyceae (dinoflagellates), cyanobacteria, Prasinophyceae, Chlorophyceae, Cryptophyceae, 
Prymnesiophyceae A & B, Raphidophyceae, Eustigmatophyceae, Chrysophyceae, and Euglenophyceae. 
 
Meteorological data were also compared with nutrients and phytoplankton data. Monthly precipitation totals 
from La Guardia Airport were downloaded from NOAA (http://lwf.ncdc.noaa.gov/oa/ncdc.html). Cloud cover 
(reported as percent cloud cover) and wind speed at the Flushing weather station were obtained from Weather 
Underground (http://www.wunderground.com). Wind speed was converted to wind energy by squaring the 
speed. The Connecticut River contributes >70% of the riverine freshwater being discharged into Long Island 
Sound, and thus it is a good representation of the estimate of freshwater input (Lee and Lwiza 2005). Monthly 
freshwater discharge from the Connecticut River was downloaded from USGS (http://waterdata.usgs.gov/nwis).  
 
Long-term trends of nutrients, Chla, and the phytoplankton clades were calculated using the Theil-Sen (T-S) 
estimator, a robust regression method which takes into account the possibility the data being heteroscedastic 
(Wilcox, 2005). Confidence intervals (CI) were estimated by bootstrapping 599 estimates of either the T-S 
estimator and taking the middle 95% of these estimates, according to Wilcox (2005). Canonical component 
analysis (CCA) was used for multivariate analysis according to the Barnett and Preisendorfer (1987) method. 
Nutrient, hydrographic, and phytoplankton variables at station A4 were split into 3 datasets, pre-filtered using 
principal component analysis, and CCA was used to determine the patterns of maximum correlation between 
the 3 datasets. After pre-filtering, this method was used to determine the patterns for different modes that 
maximize the covariance between phytoplankton and nutrient variables or between phytoplankton and 
hydrographic variables. 
 
Results: 
Dissolved nitrogen species changed significantly between 1995 and 2009 at all stations in LIS. TDN 
concentrations, which include DIN and DON, have increased in both surface and bottom waters (Fig. 1.2A), 
with the largest increases being in western LIS. DON concentrations have significantly increased at all stations 
in surface and bottom waters (Fig. 1.2B). In contrast, DIN concentrations decreased significantly at most 
stations, except A4, where they increased (Fig. 1.2C). The modest decreases in DIN concentrations at most 
stations were largely driven by decreases in concentrations of NOx (Fig. 1.2D). There were no consistent trends 
in NH4

+ concentrations, except at A4, where they significantly increased in surface and bottom waters (Fig. 1.2 
E). In general, the inorganic dissolved nitrogen species have decreased Sound-wide in favor of increases in 
dissolved organic forms. Station A4 is an exception, where both the inorganic and organic dissolved nitrogen 
species increased. 
 
TDP concentrations have significantly increased throughout the Sound in surface and bottom waters (Fig. 
1.3A). The largest increases were observed in western LIS. No measureable changes in DOP concentrations 
were observed at any station. At the same time DIP concentrations show a significant increase in surface and 
bottom waters for all stations, with the largest changes also observed in western LIS (Fig. 1.3B).  

 
DSi concentrations increased significantly throughout the Sound in surface and bottom waters (Fig. 1.4A). 
However, particulate BioSi significantly decreased at all stations in surface and bottom waters (Fig. 1.4B). 
Western LIS exhibited the largest changes. Increases in DSi were generally larger than decreases in BioSi, and 
so total Si significantly increased at most stations. 
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There were no significant long-term trends in salinity or density. However, there were small but significant 
decreases in surface and bottom water temperatures, River discharge, precipitation, wind energy, and DO 
concentrations. Cloud cover exhibited slight but significant decreases. 
 
 
 
Objective 2: Examine the role of phytoplankton biomass, bacterial production and mortality on the oxygen 
demand in the water column. 
 
Chlorophyll a: 
Chla was measured from samples collected from 1 meter below the surface at station 1 and integrated through 
the mixed layer.  Integrated Chla inventories were slightly higher in surface waters in September than in 
August.  The majority of Chla was found in the <5-µm fraction. Chla measurements were also taken at depth 
during each cruise.  During the August cruise, the <5-µm size fraction contributed the largest portion of Chla at 
all depths.  During the September cruise, the <5-µm fraction made up the largest portion of Chla in the surface 
but the contribution of the <5-µm fraction decreased with depth. Chla concentrations in mid-August 2010 were 
similar to those measured in 2009 (~ 30 µg/l).  However, concentrations in mid-September 2010 were higher 
(~30 µg/l) than they were in September 2009 (~10 µg/l). 
 
Integrated Primary Production: 
Surface samples (1 m depth) were collected at station 1 and incubated under graded levels of irradiance (I = 2.5 
37.5, and 56.7% I0) for 24 hours.  Rates of primary production were measured by 14C-bicarbonate incorporation 
and then integrated through the photic zone. Results showed that rates of primary production in August and 
September of 2010 were less (0.5-2.0 gC/m2/d) than rates during the same time period in 2009 (1.0-4.0 
gC/m2/d).  Similar to August 2009, net primary production in the August 2010 <20-µm fraction was enhanced 
compared to unfractionated samples, suggesting that primary producers were culled significantly by larger 
grazers during that period. 
 
 
Bacterial Net Production  
Bacterial net production (BNP) was estimated from the incorporation rate of 3H-leucine into protein during 3-
hour dark incubations.  BNP was greatest at mid-depth in August while it was highest in surface and bottom 
waters in September.  Water column integrated BNP in August 2010 was the highest recorded during this 2-year 
study (~100 mgC/m2/d). Water column integrated BNP in September 2010 (~10 mgC/m2/d) was less than rates 
measured during mid-September in 2009 (27 mgC/m2/d).   
 
Nutrient analysis 
Particulate organic carbon (POC) and particulate organic nitrogen (PON) concentrations were similar in August 
and September 2009.  Overall, the average POC:PON ratio for station 1 throughout this study was 9.9.  This 
exceeded the Redfield ratio for carbon: nitrogen (6.625), suggesting that plankton communities in western Long 
Island Sound are enriched in carbon relative to nitrogen. The average concentration of ammonia (NH4

+) was 
significantly lower in August and September of 2010 (0.6 µmol/kg) than in 2009 (3.3 µmol/kg), and was below 
detection in several samples.  Concentrations of NO3

-, NO2
-, and PO4

3- are pending analysis by the SoMAS 
Analytical Laboratory. 
 
Potential Respiration Rates 
Rates of respiration in bottom water in August and September of 2010 were much less than in 2009.  
Respiration in surface water was always higher than in bottom water.  High rates of bottom water respiration in 
August and September of 2009 (up to 195 µM O2/d in August 2009) coincided with events of bottom water 
hypoxia and anoxia.  However, in August 2010, we observed bottom water hypoxia at station 1 when 
respiration rates were only ~ 40 µM O2/d. In September 2010, bottom water hypoxia was not observed and 
respiration rates were low (~ 7 µM O2/d). 



 
Respiration in the <20-µm fraction comprised the largest fraction of total respiration, making up an average 
78% of the total respiration observed.  Respiration in the <5-µm fraction was usually greater than the respiration 
in the whole fraction.  This was also evident in samples from 2009.  This enhancement may be due to decreased 
grazing pressure on the microbial community after the removal of predators, or due to release of intracellular 
organic matter derived from filtration-caused cell lysis.  We are currently trying to determine which of these 
explanations is most probable based on results from the other experiments. 
 
Statistics  
A statistical analysis of all of our data revealed some significant correlations between biological variables.  For 
example, BNP and dissolved oxygen concentrations are significantly negatively correlated (r = -0.70, p = 0.01), 
bacterial abundances and respiration rates in the <20-µm fraction are significantly correlated (r = 0.71, p=0.01), 
bacterial abundances and concentrations of POC and PON are significantly correlated (r = 0.75, p = 0.004 and r 
= 0.75, p = 0.005 respectively), bacterial abundances and Chla are significantly correlated (r = 0.86, p = 0.04), 
BNP in the <20-µm fraction and POC:PON ratios are significantly correlated (r = 0.92, p = 0.03), 
chemoautotrophy and respiration in the <20-µm fractions are significantly correlated (r = 0.64, p = 0.04), 
chlorophyll a is significantly correlated with POC (r = 0.97, p = 0.001) and PON (r = 0.89, p = 0.03), and 
chlorophyll a is significantly negatively correlated with total dissolved inorganic nitrogen (r = -0.93, p = 0.005) 
and POC:PON ratios (r = -0.95, p = 0.005). 
 
 
 
 
 
Objective 3: Develop a 1-D biogeochemical model to determine the mechanistic links between oxygen, 
phytoplankton biomass, microbial respiration, protistan grazing, stratification, and vertical and horizontal 
mixing. 
 

General Ocean Turbulent Model (GOTM) 

The physical model applied in this study is the Public Domain water column model GOTM (General Ocean 
Turbulence Model, see http://www.gotm.net) originally published by Burchard et al. (1999) and developed 
since then (see Umlauf et al., 2005, Burchard et al. 2005). GOTM is a one-dimensional water column model for 
hydro-thermodynamical processes with vertical mixing. The core of the model solves the one-dimensional 
transport equations of heat, momentum and salt with mean and turbulent fluxes. The momentum and turbulent 
equations for GOTM are described in great details in Umlauf et al., 2005 and Burchard et al., 2005. For brevity, 
these equations are skipped.  

Biogeochemical model (Neumann et al. (2002) ERGOM ecosystem model) 

The biogeochemical model, viz., Neumann et al. (2002) ERGOM ecosystem model simulates 10 state variables. 
Among the 10 state variables, ammonium, nitrate and phosphate represent three nutrient state variables. There 
are three phytoplankton groups and they are Diatoms, Flagellates and Cyanobacteria, respectively. Diatoms 
represent large-cell phytoplankton and they favor nutrient-rich turbulent environment. Flagellates are smaller-
cell phytoplankton, which tend to grow faster in stable water column with lower nutrient concentration. 
Cyanobacteria are the atmospheric nitrogen fixer and thus provide a nitrogen source for the ecosystem. Three 
groups of phytoplankton can be grazed by zooplankton dynamically. Dead particles of phytoplankton and 
zooplankton are accumulated in detritus, which is labile in ERGOM and could be remineralized into dissolved 
ammonium and phosphate as they are sinking. Some of the detritus could reach the bottom and get accumulated 
in sediment detritus. Beside surface flux, the dynamics of dissolved oxygen (DO) is coupled to the associated 
biogeochemical processes (i.e. photosynthesis, respiration, exudation, remineralization and nitrogen fixation) 
via stoichiometric ratios. DO concentration controls biochemical processes such as denitrification and 
nitrification in turn.  
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The model skill of GOTM was analyzed to find out the suitable nudging time scale and minimum mixing 

scheme kz. We developed an enhanced symmetric model skill metric ))((0.14 18.0

)0.1(

18.0

)0.1( 22 






R

eeS
x

 in order 
to equally assess the standard deviation and correlation coefficient. The old model skill metric (i.e.
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) applied in Joliff et al., 2009 was asymmetric and could result in unequally 

weighted statistical properties, so the target parameters may not be properly chosen. By minimizing the 
enhanced model skill metric S4, we applied the best minimum mixing scheme 5

min 10*2 k  and an optimum 
nudging time scale one month for both temperature and salinity in GOTM. To allow the model to adjust to 
proper initial conditions, it was spin up for 7 years and only the last year’s results are analyzed. 

In ERGOM, three nutrients species (i.e. ammonium, nitrate and phosphate) and phytoplankton groups (i.e. 
diatom, dinoflagellates, cyanobacteria) were nudged with three-month relaxation time scale toward monthly 
averaged observations from 2002 to 2010. The purpose was to ensure the seasonal evolution of major nutrient 
and phytoplankton species properly developed so that the role of bacterial activity in determining seasonal 
variability of DO could be established on top of accurate mechanical linkages of the ecosystem. 

Bacterial biomass was added into ERGOM as an additional box (see Fig. 3.1) and bacterial activities including 
bacterial respiration were added into the model. Besides substrate control, a temperature control factor was 
added into the bacterial respiration and uptake activities. Labile detritus remineralization was substituted by two 
major processes, i.e., bacteria uptake of detritus process and bacterial exudation into inorganic nitrogen. In the 
enhanced model, labile detritus composed of Dissolved Organic Nitrogen (DON) was assumed to be the major 
carbon source of bacteria. Bacteria also assimilate ammonium to obtain nitrogen. In steady state, the amount of 
ammonium uptake by bacteria depends on the C:N ratio of dissolved organic matter (DOM),  bacterial biomass, 
and the growth efficiency of bacteria for carbon and nitrogen. In addition, bacteria are consumed by 
zooplankton, which is represented in our model as a function of seasonal cycle of temperature, concentration of 
the prey and predators. The feedback loop of bacterial activity to the planktonic loop was mainly composed of 
bacterial exudation and mortality in the enhanced model. Bacterial mortality contributes to increase of labile 
DON; bacteria exudation led to increase of inorganic nitrogen.  

The challenging part of this objective was how to include the bacterial activity loop in the model. Because 
oxygen is consumed when labile detritus eaten by bacteria, the bacterial oxygen consumption process in the 
model was linked to detritus uptake by Stoichiometric O:N ratio.  
 
 
Objective 4: Elucidate relationships between late summer oxygen recovery, phytoplankton biomass, bacterial 
production/mortality, vertical mixing, and horizontal advection. 
 
To achieve this objective, we first examined the physical and biogeochemical properties. In addition, we 
proposed a mechanism of late summer oxygen recovery related to vertical mixing and bacterial activities (i.e., 
bacterial respiration, production, mortality, etc).  
 
Water column properties 
 
Our model result of the seasonal cycle of sea surface temperature (SST) (see Fig. 4.1a) has the minimum value 
2.5oC in middle February. In April the surface water warms up to between 6 and 10oC, and it maximizes at 22 

oC in early September. Starting from middle February, SST increases gradually until early September, after that 
it linearly decreases toward early December. The bottom waters in early September reach the maximum 
temperature 22oC.  The vertical structure of temperature (Fig. 4.1b) is well mixed between January and April. 
Starting from May the thermocline starts to develop approximately 15m below the surface, and then it shoals 
gradually with time. The thermocline becomes shallowest (i.e., 4m) in July. After that it starts to deepen and the 
water column becomes well mixed again from September to December. Modeled temperature (Fig. 4.1b) in 
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beginning of the year, diatom concentration is as low as 0.5 mmol N m-3. Then it increases quickly to 4 mmol N 
m-3, and this is a secondary diatom peak before the first diatom bloom. After that the concentration goes up to 
4.75 mmol N m-3 in April. Between the two peaks, diatom concentration exhibits a minimum concentration of 
2.3 mmol N m-3. Our result of spring bloom is consistent with previous findings of phytoplankton bloom in LIS, 
which indicate that winter spring bloom could begin as early as January, mostly in February, but could also be 
delayed until March or later (Capriulo et al., 2002; Riley, 1969). The summer diatom bloom occurs in July and 
the relatively high diatom biomass sustains throughout the summer seasons. It is possibly triggered by 
interruption of fall destabilization due to combination of increased temperature and river discharge, as well as 
reduced winds (Riley, 1959; Capriulo 2002). After that, diatom biomass decreases toward the end of year to the 
original level. In general, the phase of simulated diatom variability is approximately 10 days later than the 
measurements before middle September, after which the model tends to agree well with the measurements. 

Seasonal variation of dinoflagellate biomass exhibits less variability and smaller amplitude compared to diatom. 
At surface the biomass (Fig. 4.5b) starts to increase gradually from 0.1 mmol N m-3 in January to 0.2 mmol N 
m-3 in late April, after that it increases sharply till reaching 0.6 mmol N/m3 in middle June, which stays almost 
constant from mid-June till mid-September, when diatom has already died out. Previous studies indicate that 
flagellates bloom in LIS may happen in June with sufficient nitrogen supply (Riley & Conover, 1967), and may 
replace the diatom biomass as the season progresses because flagellates are favored by stratification and low 
inorganic nitrogen more than diatoms (Capriulo 2002; Riley & Conover, 1967; Demers et al., 1978; Margalef, 
1978; Mann, 1982; Peterson, 1986; Mann & Lazier, 1991; Kiørboe, 1993). After the bloom, the Dinoflagellates 
biomass decreases sharply toward the end of the year. The simulated dinoflagellates biomass exhibits similar 
seasonal variability and magnitude as the observation. 

 

 

(a)                                                           (b) 

Figure 4.5: Seasonal variation of diatom and dinoflagellates. Fig. 4.5a and Fig. 4.5b show profiles of diatom and 
dinoflagellates, respectively. Blue line shows model results, which is nudged with five-day relaxation time scale 
using monthly climatological data, indicated by red line. 
 

The simulated bacterial concentration as a function of depth and time is shown (Fig. 4.6a). For comparison 
purpose, the time series of observed bacterial concentration measured at surface versus the modeled 
concentration is plotted (Fig. 4.6b). The modeled bacterial biomass at surface shows the same order of 
magnitude as the observed surface bacteria concentration (Fig. 4.6b). The initial concentration is 0.2 mmol N m-

3, then it starts to increase to 1 mmol N m-3 and sustains at that level through May. After that it increases quickly 
to the maximum 3 mmol N m-3 in July and August. Thereafter the biomass just goes down to the original low 
level by the end of the year. The seasonal variation of bacterial biomass profile (Fig. 4.6a) shows that the 
surface bacteria concentration reaches maximum of 3mmol N m-3 at the top 5 m during summer, below which it 
decreases with depth to approximately 1mmol N m-3. 
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which in turn depends on planktonic loop modulates organic carbon remineralization, hence the link to oxygen 
variability. Bacterial processes, including bacterial production, respiration and mortality are very important in 
modulating organic matter decomposition and oxygen variability in coastal estuaries. Therefore, in order to 
accurately represent oxygen dynamics coastal ecosystem models should explicitly simulate the whole microbial 
loop when modeling and predicting oxygen variability. More importantly, this effort revealed major drawbacks 
which would hamper improvements of models, viz., lack of field measurements of several important rates, e.g. 
growth and mortality of important groups. There should be concerted efforts to obtain relevant values of these 
rates. Substantial modifications are required in these models before they can be used by decision makers to 
reassess and develop more realistic total maximum daily loads (TMDLs) in order to manage hypoxia. 
 

 
C3. Problems Encountered: (1) We had trouble getting R/v Paumanok, the boat we initially intended to use, 
because of logistical and manpower issues, but eventually SoMAS provided us with a bigger boat R/v Seawolf 
at the price of the smaller boat. (2) We could not obtain data on sediment oxygen demand from Principal 
Investigators working on a sister LISS-funded project during the same funding cycle. (3) We did not have 
measurements for growth, mortality rates for bacteria, phytoplankton and zooplankton major groups, as well as 
grazing and exudation rates for zooplankton from LIS. 

C4. New Research Directions: Identify additional, new research directions pursued during the course of the 
project, and reasons for adding them to the original research plan.  Also, list any newly funded projects resulting 
from this NYSG project. 

1. Invest in field programs that would determine fundamental ecological rates, for example: 

a. Growth and mortality rates of important phytoplankton species as a function of nutrients, light, 
temperature, depth and time (season). We are cognizant of the expenses involved, but three or four 
depths in the water column would suffice.  

b. Grazing growth and mortality rates of important zooplankton species as a function of 
phytoplankton group biomass (and/or bacteria), depth temperature, and time (season).  

c. Excretion rates of important zooplankton species as a function of phytoplankton biomass, depth 
and time (season).  

d. Growth and mortality rates of important bacterial groups as functions of temperature, nutrient 
regimes, depth and time (season). 

e. Nitrification/denitrification rates. 

f. Sediment oxygen demand processes need to be better resolved temporally and spatially. 

2. Invest in coupled 1-D models or simple 3-D models (with 3x3 grids) that are easy to analyze in order to 
make sure that we have most if not all fundamental ecological processes covered properly (not hastily 
parameterized). Combined with item (1) above this would minimize the model uncertainty in very 
significant way. Currently, there are models that use 22-30 state variables, with very little knowledge about 
how those variables interact in the field. 

3. Follow the path of climate modelers by using inter-comparison between different models to identify gaps in 
our understanding how processes involved in oxygen dynamics work. Other regions like the Chesapeake 
Bay have already started doing this, but in Long Island Sound there is still fear in using this approach. The 
fear is based on the argument that – “what happens if we find that SWEM is fundamentally flawed or just 
performs poorly compared to other models, after having invested large amount money?”. However, this 
fear is unfounded because competition will force SWEM supporters to improve the code. If for some reason 
it cannot be improved then superior alternatives should be considered. 



 

C5. Interactions: Describe participation or interactions with NYSG Extension staff, and industry, agency or 
other stakeholder representatives. 

1. In March 2009 we organized a meeting for the newly funded U.S. EPA projects at Stony Brook. We 
invited the Director of New York Sea Grant, Dr. J. Ammerman. The purpose of the meeting was to 
explore ways to integrate field work where possible and share data. We wanted to develop a coordinated 
field effort to maximize the resources. 

2.  The PI worked with New York Sea Grant to convene a meeting at Stony Brook On April 27, for all 
newly funded and ongoing projects in LIS funded by U.S. EPA through LISS, New York Sea Grant, and 
Connecticut Sea Grant. Similar to the earlier internal meeting for Stony Brook investigators, the purpose 
of the meeting was to examine current knowledge of what was being addressed by the funded projects 
and examine was of coordinating the field work and encourage data sharing. 

3. All project personnel attended all STAC meetings that were held during the lifetime of the project. We 
presented our results and made suggestions on how to improve observations, models, and their 
interpretation. 

4. We exchanged field data with James O’Donnell of the University of Connecticut. He gave us time series 
data from the Execution Rocks Buoy.  

 

C6. Presentations and Publications:  

Publications:   
 
None (We have two manuscripts ready to be submitted). 
 

Presentations:  

1. Kamazima Lwiza, Elizabeth Suter, Gordon Taylor & Ling Liu. March 16th 2010, Long Island Sound 
Researcher Workshop “Interaction of Biological and Physical Factors Controlling Bottom Dissolved 
Oxygen” 

 

2. Kamazima Lwiza July 09, 2010, Long Island Sound STAC meeting at the University of New Haven 
“Spatial and Temporal variability of Nutrients in LIS” 

 

3. Ling Liu and Kamazima Lwiza, The seasonal variability of circulation in Long Island Sound. Middle 
Atlantic Bight Physical Oceanography and Meteorology. MABPOM 2010. Steve’s Institute, New 
Jersey. 
 

4. Elizabeth Suter & Kamazima Lwiza March 27th 2010, Symposium for SoMAS Student Recruitment 
Weekend -  “Factors Affecting Hypoxia in Long Island Sound”  

 
5. Elizabeth Suter, Gordon T. Taylor, Kamazima Lwiza & Julie Rose  May 5th, 2011, Changing nutrient 

regimes in Long Island Sound: A 15-year analysis. Spring 2011 NEERS Conference (New England 
Estuarine Research Society), Pt. Jefferson, NY.  BEST POSTER AWARD 
 

D1. Impacts & Effects: 

This project will have profound impacts in resources management the modeling community especially those 
dealing with hypoxia. Field observations show (i) evidence of measurable success of TMDL because dissolved 
nitrogen species are decreasing; (ii) an alarming trend of decreasing N:P ratios which is most probably 
decreasing the diatom biomass in favor of dinoflagellates; (iii) that summer hypoxia continues to occur (with 



same magnitude and duration)  in bottom waters despite the decreasing trend of dissolved nitrogen species; (iv) 
phosphorus concentration is increasing in the Sound probably due to addition of phosphorus to drinking water 
in New York City. Results from modeling experiments underscore the importance of the microbial loop in 
controlling dissolved oxygen dynamics. Several models being used for both research and operational 
applications in our coastal areas will have to re-examine their biogeochemical models. 

 

D2. Scholar(s) & Student(s) Status:  

1. Elizabeth Suter – Scholar – Completed her MSc in Dec 2011 and she is now doing her PhD under G. 
Taylor in SoMAS, Stony Brook University. 

2. Ling Liu – Scholar – She is still doing her PhD in a her third year under K. Lwiza SoMAS, Stony Brook 
University. 
 
Other students (not financially supported): 

3. Cassandra Bauer (undergraduate): Participated in the first cruise on R/V Pritchard of May 28, 2009. 
Filtering water samples on board the boat and in the laboratory. Graduated in May 2009 and entered the 
graduate program in SoMAS, Stony Brook University for MSC and graduated May 2012. 

4. Jacob Kalda (undergraduate): Participated in the third cruise on R/V Seawolf of June 23, 2009. Also, has 
been involved in experiment –setup and field data analysis in the laboratory. Graduated in May 2010. 

5.  Mariella Lopez-Gasca (MS student): Participated in the first two cruises on R/V Pritchard of May 28, 
2009 and on R/V Seawolf of June 23, 2009. Also, has been involved in experiment –setup and field data 
analysis in the laboratory. 

6. Younjoo Lee (Ph.D. Student): Participated in the second cruises on R/V Seawolf of June 23, 2009. He 
helped in collecting data on water column properties and acoustic Doppler current profiler (ADCP) data. 
Graduated in May 2009 and is currently a post-doctoral fellow at the University of Maryland. 

7. Katie Kennedy (undergraduate): Participated in the October 1st cruise on R/V Seawolf of May 28, 2009, 
and has been involved in experiment –setup and field data analysis in the laboratory. Graduated in May 
2010. 

8. Kristin Kramss (undergraduate): Participated in a cruise on R/V Seawolf of October 1st, 2009. 
Graduated in December 2009. 
 

D3. Volunteers: (None). 

 

D4. Patents: (None). 

 

E. Stakeholder Summary: There is modest evidence that LIS TMDL is working because some nutrients 
are decreasing, although some continue to increase. Nevertheless, for the last 15 years (1995-2009) summer 
hypoxia volume and duration in bottom waters have not changed much despite the decreasing trend of dissolved 
nitrogen species. What is even more alarming is that concentrations of large phytoplankton species (diatoms) 
which used to be dominant are decreasing in favor of smaller species which could affect the whole food chain in 
the Sound. There is also evidence to show that the addition of ortho-phosphoric acid to drinking water supplies 
in New York City in order to protect the population from lead poisoning from old pipes is leading to an increase 
in phosphorus in the Sound. Results from modeling experiments show that prediction of hypoxia can be 
improved by including the microbial loop explicitly in dissolved oxygen dynamics. 

 

 
 

 


