The influence of eastern oysters on
ecological processes in Chesapeake
Bay: Insights from modeling studies.
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Satellite image of Bkl
Chesapeake Bay shows a A
portion of its watershed
from which increasing
nutrient inputs are delivered.
(USGS,
www.chesapeakebay.net)
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Dissolved Oxygen in Long Island Sound Bottom Waters
July 18-24, 2007 :
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For Marylands Portion of Chesapeake Bay
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Change in Light Attenuation Associated with
Bivalve Feeding
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Sediment Core Collection and Incubation

Lowry Cove

Sediment cores were collected beneath Taylor floats and at
Reference sites, located 70-300 m downstream. Cores were
incubated in the dark and light at ambient temperature (20-32 C).

Nutrient (and sediment) Analyses

Pore water NH,* and £H,S and surface
sediments collected in an N, glove bag

MIMS (O,, N,)

_ Loss on ignition
Nutrient fluxes: Total Nitrogen

NH,*, NO, + NOy, Total Carbon
N2'N, 02
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Phytoplankton Size Distribution

Chesapeake Bay Program Data
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Phytoplankton consumption at 100 times current oyster densities relative
to phytoplankton daily production (g C gt C d). Fulford et al. 2005
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Phytoplankton Response to Oyster Recovery
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Estimates of Existing and Historical Oyster Biomass (Cerco and Noel
2007)

Source Maryland (kg C) Virginia (kg C) Total (kg C)
EXxisting, this study 287,000 1,170,000 1,457,000
Existing, Newell (1988) 550,000 400,000 950,000
Existing, Uphoff (2002) 570,000°

Tenfold increase, model 14,100,000 4,375,000 18,475,000
19" century, Newell (1988) 94,000,000
Historic, model 69,750,000 17,200,000 86,950,000

In the southern portion, high densities (mean = 6.2 g DW m™) are
concentrated in limited areas (377 km?), primarily in the lower James and
Rappahannock Rivers.

In the northern portion, lower densities (0.43 g DW m™) are distributed
over a wide area (1330 km®).
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SUMMARY:

Strong seasonality in bivalve activity alters rates of
phytoplankton consumption.

Bivalves graze on phytoplankton growing on ambient
inorganic nutrients; hence no additional nutrients are
infroduced as occurs when caged fish are fed food pellets

Bivalves enhance deposition in shallower waters and
hence reduce microbial respiration of POM beneath the
S pycnocline, thereby reducing the severity of summer,

bottom water hypoxia . - e

k=

Makes particulate nutrients available to other benthic
organisms.




Biodeposits enrich sediments and alter their geochemistry.

Where water flow and oxygen are adequate, N may be
lost as gaseous N, and N and P buried.

When biodeposition is high and either water flow or
oxygen are low, sediments may become anoxic, leading
to mortality of benthic organisms, release of bound
P.,and inhibition of nitrification/denitrification.

Bivalve feeding reduces turbidity thereby permitting
».growth of benthic plants. Beneficial if benthic
d'%a’roalgae and seagrass grow but possible ‘adversesifa s
- macroalgal (e.g., Ulva spp) colonize.

Benthic microalgae, an important food source for many
invertebrates, can take up large amounts of N & P
- regenerated from bivalve biodeposits. e
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Natural populations of suspension-feeding benthic bivalves
can exert the most profound ecosystem effects in regions
with relatively shallow water (i.e., where clearance rate in
relation to water volume is high)

By culturing bivalves off—bottom in aquaculture floats it
will be possible to extend their influence to deeper waters.

Because of the magnitude of bivalves required to effect
ar total water quality improvements and uncon‘rrollable
ﬂgcfors (disease, storms; etc) the use of bivalves as'a ="
“mechanism for nutrient Femetiiation-should complement but
never substitute for curbing nutrient inputs to the estuary.
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