

Insomniac Cruises: Low Oxygen = RED

Embayments with Chronic Low Oxygen:

1. Edgewood Shoal, 2. Greenwich Bay, 3. Bristol Harbor

Hydrodynamics: The 3 Legged Stool

Hydrodynamics: The 3 Legged Stool

WHY? Data: Sampling gaps... **Numerical** Lab Models. Models

- approximations, grid size issues
- turbulence parameterized

- +continuous fluid,
- not all processes

Data:

- 1. Mind-numbing spatial ADCP surveys great spatial data, poor temporal 16 hour (tide cycle) surveys key transect lines spring/neap; seasonal, etc define repeat flow structures
- 2. Moored ADCPs in key locations.

 lots of \$, grey hair

 amazing temporal

 every 5 mins, for 4 -12 months

 poor spatial

 50 cm bins, but only 1-5 sites
- 3. Tilt current meters in key locations good spatial & temporal, low cost

Acoustic Doppler Current Meters ADCPs

Map water circulation patterns in space & time

CIRCULATION DATA

- 1. Outflow
- 1. Deep inflow 7
- 1. Re-circulation gyre

UNDERWAY ADCP:

Basic pattern seen Spring/Neap & summer, winter, fall, spring

Providence River Data: Current Meters (ADCP & Tilt)

Upper Providence River Bathymetric Map:

TCM Deployments: 2009 (3 months); 2010 (6 months..flood); 2009, 2014

Tilt Current Meters (Low Cost \$300 vs. \$30000)

Good spatial & temporal. Details of how Gyres Work.

Tilt Current Meter Experiment: Summer, 2009; Spring/Summer 2010

NOT Fast Flush, but Bi-Modal Flush

Great RI Flood: March 28th (22:00)

Thru April 7, very stable

Gyre is chronic (summer, winter, spring, fall) Do see a) shape/spin changes, b) **periodic flush**

Box Model, Edgewood Shoals
Periodic retention> oxygen drawdown >
discharge

Edgewood Shoals: 8 million cubic meters

10% of Providence River volume.

Model estimate:

4-5 day retention time.

release in wind event over 1 day.

equivalent to ~13 CMS low oxygen river

Data: Chronic Gyre on Shoal

Data: Gyre persistent

~5 million data points !!!!
3 mo. moored ADCPs
12 full tide cycle ADCP surveys
3 x 3 mo., 18 TCMs/ exp.

But add 3rd Leg of GFD Stool: Laboratory Models

3rd Leg of GFD Stool: Laboratory Models

POWERPOINT SOMETIMES FLIPS THIS ON SIDE

Applied river runoff

Scaled Lab Model: Providence River

Channel & Shoal

River Runoff

Tides

- No wind
- No density differences
- + Real Fluid

LAB & Data: Chronic Gyre on Shoal

Lab shows extreme isolation of shoal bottom water.

Outflow + Bathy = Stratified flow

Easy retain for 10-20 tide cycles

Kincaid, Ullman and URI/GSO Students: Multiple generations of ROMS models.

ROMS: Regional Ocean Modeling System

High resolution (30m) ROMS: 1. Stable gyre.

- 2. Complex transport north sources flush, south source wraps
 - 3. Flushing? Age of water vs. oxygen?

Early version:
Matched tidal flows/heights
Sub-tidal (shown) is bad

Tidal and sub-tidal Flow Data vs Model Willmott Skills High: 0.8 – 0.9 Even captures challenging flood event

2010 ROMS Simulation: Transport of temperature/salt/chemical dyes
Individual dyes for 9 rivers and 7 WWTFs:
Can track accumulation/flushing/transport of all major source

Modeling Embayment Retention: Floats & Passive dyes 2010 Summer ROMS Simulation, flushing of numerical "floats"

Grant: For physics-side of eco-model, age of water is key

Box models & Coarse ROMS Prov. River Flushing: 1 - 3 days

Lab & High Res. ROMS Flushing BI-MODAL:

1-3 days (5-15 days)

jet gyres

Greenwich Bay:

Two other embayments

Poor water quality Chronically low oxygen

Both have very stable gyres shown in Data/Models

Focus Greenwich Bay:

a catalyst for bay-wide

eco-system events?

Outline: 1. Data. 2. Flushing models. 3. NPZD models

Summer 2009 & 2010

Summer 2012

ADCP & TCM Data

Field observations

• RED →

SeaHorse Tilt Current Meter (TCM)

• YELLOW →

Acoustic Doppler Current Profiler (ADCP)

Data (and models) show isolation of Greenwich Bay inner basin

Eastward-blowing wind

Greenwich Bay Tilt Current Meters: MAP BOTTOM CURRENTS Chronic inner basin GYRE: Northward winds

ROMS Model Results

Passive "numerical tracers move with circulation 2006 Summer Conditions

Case 1: Winds turned off. Case 2: Sea Breeze on.

With no wind, flushes day 183, + 4 days Old manual: 4-7 days to flush

With seabreeze, partially flushed day 195, + 16 days Old manual: 4-7 days to flush

Identical Summer Runs Except for Wind

Winds turned off. Flush in 4 days

Seabreeze, N-ward winds on Multiple gyres.

Water retained in inner basin

Seabreeze, N-ward winds on Multiple gyres. Water retained in inner basin

Decimal Day 182 is July 1
FLUSHING FAVORABLE: Southeast-ward Wind Event

Greenwich Bay Summary:

A) N-ward winds: >15 day residence time

2006: Severe GB hypoxia, frequent N-ward winds

B) E-ward winds: <4 day residence time

2007: Mild GB hypoxia, frequent NE-ward to E-ward winds

Nitrogen is not a conservative dye..... So NPZD Ecosystem Model turned on in ROMS

N= Total nitrogen; P=phytoplankton, Z=zooplankton

$$\frac{dP}{dt} = \frac{V_m N P}{k_s + N} - mP - I_i Z \tag{1}$$

$$\frac{dZ}{dt} = (1 - \gamma)I_i Z - gZ \tag{2}$$

$$\frac{dN}{dt} = -\frac{V_m N P}{k_s + N} + mP + gZ + \gamma I_i Z \tag{3}$$

$$I_i = R_m (1 - e^{-\Lambda P}) \tag{4}$$

Also Detritus Equation

Nitrogen from 9 Rivers & 7 for Waste Water Treatment Facilities: Independent control, can reduce any river or any WWTF

Start with focus on bay-wide bloom, June, 2010

Total Nitrogen: Surface Reference case: Vm2.5, KL0.75, ZG1.0 Contours in mMole/m³ (divide by 75 to get to mg/l).

Fundamental observation in Bay: TN reduction from Seekonk to Mouth of Providence River All runs (pre-bloom) have TN match basic observation:

- 1. 40% reduction Head of Prov. River to Mouth
- 2. Seekonk 50% higher than upper Prov. River

Latitude

Phytoplankton: Surface Reference case: Vm2.5, KL0.75, ZG1.0. Shows it starts in Greenwich Bay and Mt Hope Bay

NPZD ROMS & Data (June 2010) show bloom starts Greenwich Bay, appears mid-Bay and later in Providence & Seekonk Rivers

Is Greenwich Bay embayment a catalyst for Bay-wide events?

These are complex models, with lots of parameters.

Good to ask, What are repeatable processes / patterns?

Blooms start in Greenwich Bay, spill to mid-Bay.

Bloom progresses like wave, south to north:

Mid-Bay Lower-Bay **Providence River** Phytoplankton, mM-N/m³ Phytoplankton Day 160 Bloom progresses GB CP 6/9 like wave, south to north WP 41.75 41.7 41.55 41.65 41.6 41.5 41.8 41.45 Phytoplankton, mM-N/m³ Day 163 10 GB 6/12 Vm2.5 □Vm2 Vm1.5_□ 41.75 41.65 41.55 41.7 41.6 41.5 41.45 41.8 50 Phytoplankton, mM-N/m³ Day 166 ES 🖺 40 Edgewood 6/15 30 often sits high 20 _ -41.75 41.7 41.65 41.6 41.55 41.5 41.8 41.45 Latitude

Figure 40. Plots of phytoplankton concentration versus latitude for cases with WWTF levels of 355 mM m⁻³ and highlighting the difference between three N uptake rates (R:Vm2.5, G:Vm2, B:Vm1.5). Start of bloom at mid-latitude. CP=Conimicut Pt., BR=Bullocks Reach, ES=Edgewood Shoal, GB=Greenwich Bay, WP=West Passage at Warwick Neck.

A pesky embayment as a catalyst for baywide eco-processes..

Winds pump GB bloom products to Ohio Ledge

Model Scenario/Process Tests:

- 1) Test impact of different WWTF release levels.

 15 mg/l, 8 mg/l, 5 mg/l, 3 mg/l, 0 mg/l
- 2) Is Greenwich Bay a bad gallbladder, influencing bloom dynamics throughout entire system?

Phytoplankton Levels vs. Time: Comparing mid-Bay levels for range of WWTF release levels

Summary

Data + Numerical Models + Lab Models: Stable gyres in chronic hypoxic regions (embayments)

Tracers/dyes show hotspots have periods of >5 day retention bottom water, rapid flush

Dye (N as conservative tracer) show transport pathways for sources.

southeastern dyes move well north

GB oscillate: northern river sources vs. local sources

GB dye pumped periodically to mid-Bay site

ROMS NPZD / Data trends suggest Greenwich Bay is a hotspot for blooms Wind events and tidal pumping produce GB to Ohio Ledge export.

Zooplankton grazing controls length of bloom (Zg=2 best match).

But also can lead to very important divergence in solutions.

Time scale of P and Z growth paths vs time scale of wind-driven events

Timing of Ohio Ledge export to Providence River vs. wind events & zooplankton growth can produce either muted or enhanced PR/SR blooms.

ROMS Eco-process tests: Weighing bloom magnitude vs: 1) nutrient reductions. 2) physical drivers. 3) hotspots

Greenwich Bay bloom products independent of parameter choices If cut it out, does it influence NPZD products baywide?

Greenwich Bay off = Big Effect on Prov./ Seekonk Blooms.

Embayments, with chonically poor flush, potentially far-reaching impacts

Surface Zooplankton: without Greenwich Bay zeroed

Surface Zooplankton: (GB-OFF - GB-ON)

Blue: zooplankton in GB-OFF < in GB-ON

Summary

Data + Numerical Models + Lab Models: Stable gyres in chronic hypoxic regions (embayments)

Tracers/dyes show hotspots have periods of >5 day retention bottom water, rapid flush

Dye (N as conservative tracer) show transport pathways for sources.

southeastern dyes move well north

GB oscillate: northern river sources vs. local sources

GB dye pumped periodically to mid-Bay site

ROMS NPZD / Data trends suggest Greenwich Bay is a hotspot for blooms Wind events and tidal pumping produce GB to Ohio Ledge export.

Zooplankton grazing controls length of bloom (Zg=2 best match).

But also can lead to very important divergence in solutions.

Time scale of P and Z growth paths vs time scale of wind-driven events

Timing of Ohio Ledge export to Providence River vs. wind events & zooplankton growth can produce either muted or enhanced PR/SR blooms.

Available flow data: 4 months Summer 2012

Student K. Rosa: Combining buoy data, flow data & ROMS (w/ NPZD) Role of embayments in ecosystem processes.

Northward bio-chemical fluxes & bloom dynamics

Same 2010 Conditions But: Imposed North-ward Blowing Wind Event

Prime areas of chronic low oxygen have retention gyres:

Based on Data & Models

Numerical & LAB & Data: Chronic Gyre on Shoal

But.....

Lab & Data agree on vertical flow structure

Numerical model misses it

Stage 1: GB start (spill to mid-Bay)

Stage 2: Mid-bay bloom (spill northward)

Stage 3: Bloom progresses rapidly northward

2010 Flood: Greenwich Bay Dye Accumulations

%'s change with runoff, wind & other forcings

Which Sources Contribute to Nutrient Levels on Edgewood Shoal?

Convert all dyes to total nitrogen:

- 1. Which Nitrogen sources most important in hypoxic areas?
- 2. Impact of WWTF nitrogen reductions (if conservative)?

Greenwich Bay: Idealized wind: Dye residence times

Bloom Occurrence Latitude vs. Time (June 2010). Data vs. Model

Pick June 2010 Bay-wide bloom event to start ROMS NPZD

